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Daverman's book is the first devoted exclusively to the theory of decom
positions. It is much needed, and provides an excellent treatment of a subject 
of growing importance. 

REFERENCES 

1. R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned 
spheres, Ann. of Math. (2) 56 (1952), 354-362. 

2. , Inequivalent families of periodic homeomorphisms of E3, Ann. of Math. (2) 80 
(1964), 78-93. 

3. , The Cartesian product of a certain nonmanifold and a line is E4, Ann. of Math. 
(2) 70 (1959), 399-412. 

4. M. Brown, A proof of the generalized Schönfïies theorem, Bull. Amer. Math. Soc. 66 
(1960), 74-76. 

5. J. W. Cannon, E2H3 = S5/G, Rocky Mountain J. Math. 8 (1978), 527-532. 
6. R. D. Edwards, Suspensions of homology spheres (unpublished manuscript). 
7. M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 

(1982), 357-453. 
8. C. H. Giffen, Disciplining dunce hats in 4-manifolds (unpublished manuscript). 
9. R. L. Moore, Concerning upper semi-continuous collections of continua which do not 

separate a given continuum, Proc. Nat. Acad. Sci. 10 (1924), 356-360. 
10. , Concerning upper semi-continuous collections of continua, Trans. Amer. Math. 

Soc. 27 (1925), 416-428. 
11. F. Quinn, Resolutions of homology manifolds, and the topological characterization of 

manifolds, Invent. Math. 72 (1983), 267-284; Corrigendum, Invent. Math. 85 (1986), 653. 
12. G. T. Whyburn, On the structure of continua, Bull. Amer. Math. Soc. 42 (1936), 

49-73. 

STEVE ARMENTROUT 

PENNSYLVANIA STATE UNIVERSITY 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 19, Number 2, October 1988 
©1988 American Mathematical Society 
0273-0979/88 $1.00 + $.25 per page 

Hamiltonian methods in the theory of solitons, by L. D. Faddeev and L. A. 
Takhtajan. Translated by A. G. Reyman. Springer-Verlag, Berlin, Heidel
berg and New York, 1987, ix+592 pp., $110.00. ISBN 3-540-15579-1 

The modern theory of integrable or solvable systems was initiated by the 
discoveries of Gardner, Greene, Kruskal, Miura and Zabusky in their inves
tigations of the Korteweg-de Vries equation during the sixties. There then 
followed a period of intensive activity, which lasted until the late seventies, 
during which the characteristic features of these systems were explored and 
a vast class of such equations discovered. It is fair to say that many of the 
major advances in this field are associated with groups of researchers at a 
particular institute, such as the Leningrad group to which the authors of this 
book belong. 

Most of the solvable equations possess a family of special solutions, which 
can be obtained in closed form. In the simplest cases, such as the Korteweg-
de Vries equation, they can be given a physical interpretation as a collection 
of interacting particles. Each particle has only nearest neighbour interaction 
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and the particles emerge from collision with one another undergoing only 
internal changes of phase, but without loss of energy. These special solutions 
or solitons (a term coined by the Princeton group) are connected with a group 
theoretic interpretation of the equations, which is due to the Kyoto school of 
researchers (Date, Jimbo, Kashiwara, Miwa, Sato and Sato). Essentially the 
soliton and rational solutions of a given equation are found to be obtained by 
solving a Hirota equation. This equation defines an algebraic variety which 
is generated by the orbit of a highest weight vector in an irreducible highest 
weight (level 1) representation of an affine Lie algebra under the action of the 
corresponding group. Any solution to the equation is called a r-function; it 
can be considered as a generalisation of a ^-function. This work was begun 
in the eighties and is still proceeding. 

One of the unsatisfactory features of the present theory is that it really only 
covers physical systems in two dimensions (one of which may be time). An 
exception (there are others) is the Kadomtsev-Petviashvili equation (2 space, 
1 time). This has special solutions which have the form of a wave of infinite 
length with a cross-section given by the soliton solution of the Korteweg-de 
Vries equation. It is remarkable that the group theoretic treatment due to the 
Kyoto school of the Kadomtsev-Petviashvili equation has recently been given 
another interpretation in string theory. Sato and co-workers at Kyoto have 
recently attempted to extend their theory to higher dimensions by generalising 
their original work. This has resulted in the theory of D-modules. 

The two authors of the volume under review belong to the Leningrad group 
of researchers (Faddeev, Korepin, Kulish, Reyman, Reshetikhin, Semenov-
Tian-Shansky, Sklyanin and Smirnov). They have principally worked on the 
interpretation of solvable equations as classical fields and their quantisation. 
Naturally the interpretation of the classical field equations as Hamiltonian 
systems is the first step in such a program and the group have made extensive 
original contributions in this area. If the solutions of the solvable equations 
are required to satisfy a rapid decrease (Schwartz) condition at spatial in
finity then the field equations can be interpreted as completely integrable 
Hamiltonian systems; there exists a canonical transformation to action-angle 
variables in which the equations of motion can be explicitly integrated. Solv
able equations arise in hierarchies of increasing nonlinearity and order and in 
the Hamiltonian picture the members of a hierarchy are in involution with re
spect to one another. The definition of the Poisson structure for the solvable 
equation is usually straightforward. The Korteweg-de Vries equation is an 
exception here, and this is one of the reasons why the authors have settled for 
the nonlinear Schrödinger equation, another "universal" solvable equation, as 
their main equation for study. 

A major innovation of the Leningrad group has been the derivation of the 
Poisson brackets satisfied by the transformed canonical variables through the 
study of the transition operator. To define this it is necessary to use the zero 
curvature representation of the solvable equation. This is essentially a system 
of linear equations involving a spectral parameter whose complete integra-
bility, subject to the invariance of the spectral parameter, is guaranteed by 
the solvable equation being satisfied. The Poisson brackets for the transition 
operator at different values of the spectral parameter are given in terms of 



BOOK REVIEWS 567 

the two operators and a new entity, the classical r-matrix, which depends 
upon the two spectral values. By reason of the Jacobi identity the r-matrix 
satisfies an equation called the classical Yang-Baxter equation. Conversely if 
an r-matrix satisfies the classical Yang-Baxter equation it is possible to define 
a corresponding Poisson structure for the original field equation. 

In the quantised version of the field equations the operator corresponding 
to r satisfies the Yang-Baxter equation (the classical Yang-Baxter equation is 
obtained from the 0(h) expansion of this equation). It is a remarkable fact 
that this equation also occurs in statistical mechanics. The analysis of the 
classical Yang-Baxter equation has been investigated mainly by the Russians 
(Belavin and Drinfeld in particular) whereas the Yang-Baxter equations have 
been studied principally by the Leningrad and Kyoto groups. There is a 
deep relationship with the theory of affine Lie algebras and the work on theta 
functions and modular forms due to Kac and Peterson. 

The book is a treatise on the application of Hamiltonian methods to solv
able equations in one space one time, treated as classical field equations. It 
is divided into two parts. The first part deals principally with the nonlinear 
Schrödinger equation as a basic example and the second part applies the meth
ods to other interesting systems which include the Heisenberg ferromagnet, 
the sine-Gordon equation and also some lattice models such as the Toda lat
tice. The Hamiltonian structure of the equations is studied under a variety of 
boundary conditions; in addition to the Schwartz condition mentioned earlier 
the quasi-periodic and finite density boundary conditions are also considered. 
A nice feature of the book is a thorough working out of the relationship be
tween the Hamiltonian techniques and other methods of analysis used to study 
solvable equations such as the Riemann-Hilbert method. A classification of 
integrable models based on the concept of the r-matrix is also presented at 
the end of the second part of the book. 

The book does not include any work on systems in more than one space di
mension such as the Kadomtsev-Petviashvili equation mentioned earlier. The 
complete integrability or solvability, that is the derivation of the equations of 
motion in the action angle variables and their explicit solution, is investigated 
in detail in the rapid decrease and finite density cases. The book does not 
cover the theory for the quasi-periodic situation. 

There are detailed notes at the end of each chapter which give interesting 
background material, references to areas in which the equations arise, and 
brief summaries on, and references to, aspects of the theory which are not 
covered in the text. There is an extensive bibliography at the end of each 
chapter which is especially good on the Russian literature. It is well written 
and the ideas are clearly expressed. The book uses classical analysis; the 
techniques of global analysis which are needed for full mathematical rigor 
are deliberately avoided, as the authors believe this approach obscures the 
main developments in the theory and their interrelation with other branches 
of mathematics such as the theory of Lie groups. 

The book covers the Hamiltonian theory of classical integrable equations up 
to the beginning of the eighties. As the authors state in their introduction, the 
original idea was to write a text on the quantum 12-method, and this volume 
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has become the first part of a two volume treatise. The second volume is 
intended to cover the work on the quantised systems up to the current time. 
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Moduli of smoothness, by Z. Ditzian and V. Totik. Springer Series in Compu
tational Mathematics, Springer-Verlag, New York, Berlin and Heidelberg, 
1987, ix+225 pp., $54.90. ISBN 0-387-96536-x 

Moduli of smoothness play a basic role in approximation theory, Fourier 
analysis and their applications. For a given function ƒ, the domain of which is 
a (bounded) interval Z), they essentially measure the structure or smoothness 
of ƒ via the rth (symmetric) difference 

Ar
hƒ(x) := J2 Q (-*)*ƒ(* + rh/2 ~ kh) 

(with the convention that Ar
hf(x) = 0 if x ± rh/2 £ D). In fact, for functions 

ƒ belonging to the Lebesgue space LP(D), 1 < p < oo, or the space C(D) 
(p = oo) of continuous functions, the classical rth modulus 

(1) W(/ ,*)p:= sup | |Aj;/ | |p 
\h\<t 

has turned out to be a rather good measure for determining the rate of conver
gence of best approximation or of particular linear approximation processes. 

For example, for 27r-periodic functions ƒ, D. Jackson (1911) and S. N. Bern
stein (1912) showed that the error of best approximation En(f)p by trigono
metric polynomials of degree at most n has the same rate of convergence as 
the rth modulus in the sense that, for 0 < a < r, 

(2) u<-(f,t)p=d?(ta) (t-+0)*E*n(f)p=d?(n-a) ( n - o o ) . 

In the case of algebraic approximation, however, that is by algebraic polyno
mials pn G &n of degree at most n, this result is no longer true. Though one 
has here the direct estimate 

En(f)p'-= mf \\f-to\\P<Ku,'(f±) , 
pne^n \ njp 

given in the doctoral thesis of D. Jackson (1911), it was observed by S. M. 
Nikolskii (1946) that for functions ƒ satisfying 

(3) u'(f,t)p=d?(ta) (0<a<r), 

the polynomial pn G &n of best approximation has a faster rate of convergence 
near the boundary of D than in the interior. In fact, it was the Russian school 
in approximation, in particular A. F. Timan (1951) and V. K. Dzjadyk (1959), 
that succeeded in characterizing (3) in terms of algebraic polynomials for 


