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While mathematics is certainly not a "science of measurement", math
ematicians do seek to "take the measure" of everything they study, often 
in the form of numerical, cardinal, or ordinal invariants—for example, to 
measure the deviation of a certain system from some ideal situation, to 
measure how likely or unlikely a certain object is to enjoy a certain prop
erty, or simply to measure the progress in some inductive procedure. Many 
such invariants have evolved, either directly or through analogy, from the 
Euclidean dimensions with which we measure our "real" world, and thus 
many invariants are called "dimensions" of some sort, usually decorated 
with one or more adjectives. Ring theory has its share of such dimen
sions, attached to both rings and modules, and since these dimensions 
have evolved in an algebraic rather than a geometric environment, their 
connection with Euclidean dimension may not be readily apparent. To il
lustrate, we discuss three examples—Goldie dimension, Krull dimension, 
and Gelfand-Kirillov dimension. 

Goldie dimension. Vector space dimension cannot be applied directly 
to arbitrary modules because most modules do not have bases, and even 
among those that do (namely the free modules), one can find modules in 
which different bases may have different cardinalities. The dimension of 
a vector space V can, however, be expressed as the number of terms in a 
decomposition of V into a direct sum of irreducible subspaces, or as the 
maximum number of terms occurring in decompositions of V into direct 
sums of nonzero subspaces. Since the complexity of a module need not 
be reflected by direct sum decompositions, one looks at decompositions 
of submodules along with decompositions of a given module. Thus the 
Goldie dimension (also called the uniform dimension, the uniform rank, 
or the Goldie rank) of a module M is defined to be the supremum of 
the number of nonzero terms in any direct sum decomposition of any 
submodule of M. 

This dimension arose in Goldie's 1958 development of noncommuta-
tive rings of fractions [3], since one necessary condition for a ring R to 
have a simple artinian ring of fractions Q is that the Goldie dimension of 
R (considered as a module over itself) be finite. More specifically, such 
a Q must be isomorphic (by the Artin-Wedderburn Theorem) to the ring 
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of n x n matrices over a division ring, and n is exactly the value of the 
Goldie dimension of R. Goldie dimension has in particular been found 
to be an important invariant for representations of a finite-dimensional 
(complex) semisimple Lie algebra g. The annihilators of the irreducible 
representations of g are the primitive ideals P of the enveloping algebra 
U(Q), and each of the factor rings U(g)/P has a simple artinian ring of 
fractions. The primitive ideals of U(g) can be parametrized by the dual 
f)* of a Cartan subalgebra I), and Joseph [4] discovered that f)* is a disjoint 
union of infinite subsets A, such that the Goldie dimensions of the primi
tive factor rings of U(&) corresponding to A G A/ are given by polynomial 
functions of A. 

Krull dimension. This evolved from the geometric dimension of alge
braic varieties. One way to measure the dimension of an irreducible vari
ety V is to count the number of proper inclusions in a chain 

V D Vx D V2 D • • • D Vn 

of irreducible sub varieties contained in V. Such a chain corresponds to a 
chain 

P C P{ C P2 C • C Pn 

of prime ideals in a polynomial ring k[x\,... ,*</], where P is the ideal 
defining V (that is, V is the variety whose points are the common zeroes 
of the polynomials in P). In 1923, Noether [10] proved (over an infinite 
field k, but that hypothesis is not needed) that this gives the correct answer: 
the dimension of V equals the maximum number of proper inclusions in 
chains of prime ideals ascending from P. Chain-counting then became 
the standard ideal-theoretic means of defining "dimension" in any com
mutative ring R, namely as the supremum of the lengths of finite chains 
of prime ideals in R. This value is now known as the Krull dimension of 
R, honoring Krull's fundamental contribution [7] in developing this con
cept into a powerful tool for arbitrary (i.e., nonpolynomial) commutative 
noetherian rings. 

Since noncommutative rings generally have a meager supply of prime 
ideals, a refinement of the classical Krull dimension was introduced by 
Rentschler and Gabriel [12] and extended to arbitrary ordinal values by 
Krause [5]. One may motivate it with the following observation. If R is a 
commutative integral domain whose Krull dimension is a positive integer 
«, there is a nonzero element x in R such that the ring R/Rx has Krull 
dimension n - 1. Then there is an infinite descending chain of ideals 

RDRXD RX2 D RX* D • • 

such that each of the factor modules Rxl/Rxi+l is isomorphic to R/Rx 
and thus is "as large as" a ring of Krull dimension n - 1. Hence, one is led 
to define a Krull dimension on modules, and to do so by considering the 
successive factor modules in descending chains of submodules; the concept 
is then applied to a ring R by considering R as a module over itself. 

First, artinian modules are assigned Krull dimension 0. If a is an ordinal 
and M is a module which does not already have a Krull dimension less 
than a, then M is assigned Krull dimension a if and only if for each 
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descending chain M\ D M2 2 • • of submodules of M, all but finitely 
many of the factors Mi/Mi+\ have been assigned Krull dimensions less 
than a. While not all modules can be assigned a Krull dimension, all 
noetherian modules do receive a Krull dimension. This version of Krull 
dimension is known to agree with the classical version for commutative 
noetherian rings; even somewhat more generally (e.g., for noetherian rings 
satisfying a polynomial identity). 

One example of the use of Krull dimension is to estimate the number of 
generators needed for a module, as in Stafford's extension of the Forster-
Swan Theorem [13]. Namely, let M be a finitely generated left module over 
a noetherian ring R, and for each prime ideal P of R let QP be Goldie's 
simple artinian ring of fractions of R/P and let g(M, P) be the minimal 
number of generators for QP <g>R M as a QP -module. Then the minimal 
number of generators for M is bounded by the supremum of the numbers 

g(M, P) + (Krull dimension of R/P) 

as P ranges over the prime ideals of R. (This supremum actually bounds 
the stable number of generators for M, and so in the case M = R it 
provides an upper bound for the AT-theoretic stable range of R.) 

Gelfand-Kirillov dimension. Returning to geometry, a rather loose way 
to think of the dimension of an algebraic variety V is as the "minimum 
number of independent variables" needed to define algebraic functions on 
V. More precisely, the dimension of V equals the transcendence degree 
(over the base field) of the coordinate ring R of V. The transcendence 
degree of R can be thought of, in turn, as a growth rate for R relative to 
a set of generators. This is easiest to see in the case of a polynomial ring 
k[x\,..., Xd\ over a field k—the number of monomials of degree at most 
n in the variables X\,...,Xd is a polynomial function of n, of degree d. 
Gelfand and Kirillov introduced a dimension along these lines in 1966, 
defined for a finitely generated algebra A over a field [1, 2]. Choose a 
finite-dimensional subspace W which generates A as an algebra, and for 
positive integers n let Wn be the subspace of A spanned by all products of 
at most n elements from W. The Gelfand-Kirillov dimension of A is then 
defined by the formula 

r-v A- / A\ v log dim W„ 
GK.dim(^4) = hmsup ——, -. 

logn 
(It is not hard to show that this number is independent of the choice of W.) 
For instance, A has Gelfand-Kirillov dimension 0 precisely if A is finite-
dimensional. For commutative finitely generated algebras, the Gelfand-
Kirillov dimension agrees with the Krull dimension, and is therefore an 
integer. In general, however, every real number greater than 2 can appear 
as the Gelfand-Kirillov dimension of some finitely generated algebra. 

This dimension is an important tool in the representation theory of a 
Lie algebra g; in particular, it is more tractable and more easily computable 
than the Krull dimension in the enveloping algebra U(g). (For instance, the 
Gelfand-Kirillov dimension is independent of any left- versus right-handed 
considerations, whereas in the nonsolvable case it is an open question 
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whether factor rings U(g)/I have the same Krull dimension as left and right 
modules.) To make a parallel with geometry, we recall the fact that in the 
coordinate ring of an irreducible algebraic variety V, the maximal ideals 
all have the same height, which equals the dimension of V. (The height 
of a prime ideal P in a ring is the supremum of the lengths of chains of 
prime ideals descending from P.) This is usually not true in an enveloping 
algebra U(Q). However, when g is solvable, Tauvel [14] has proved that 
the Gelfand-Kirillov dimension exactly makes up the difference: 

dim(a) - height(M) = GK.dim( t/(g)/M) 

for all maximal ideals M in E/(g). 

Relationships. Since various dimensions measure different aspects of a 
ring or a module, there is considerable interest in relationships that might 
exist among these dimensions. First, it should be mentioned that Goldie 
dimension is essentially completely independent of other dimensions—for 
instance, thinking of the lattice of submodules of a module, the Goldie 
dimension measures the "horizontal" size of this lattice, while the Krull 
dimension measures its "vertical" size. Second, the Gelfand-Kirillov di
mension of an algebra A is "usually" greater than or equal to the Krull di
mension (for instance, when A is a factor algebra of an enveloping algebra), 
and is often strictly greater. For example, if A is the nth Weyl algebra over 
a field of characteristic zero (generated by elements x\t...txnty\,...,yn 
such that xtXj = XjXt and ytyj = y7y/ while xtyj - y$Xi = Stj for all i,j), 
then A has Krull dimension n and Gelfand-Kirillov dimension 2«. Finally, 
we mention the global (homological) dimension (whose definition occurs 
in all homological algebra texts). It is well known that for a commutative 
noetherian ring, if the global dimension is finite then it equals the Krull 
dimension. For noncommutative noetherian rings, there is a long-standing 
conjecture that if the global dimension is finite then it is greater than or 
equal to the Krull dimension, which has been proved in certain cases (e.g., 
for noetherian rings satisfying a polynomial identity). 

Dimensions of ring theory by Nastasescu and van Oystaeyen aims to be 
what would once have been called a "primer" of dimension theory. Essen
tially from the ground up, it develops Goldie dimension, Krull dimension, 
Gabriel dimension (a categorically-defined variant of Krull dimension), 
homological dimension, and Gelfand-Kirillov dimension for general rings, 
modules, and algebras, including some computations of these dimensions 
in important cases, and some illustrative applications. Since the Goldie, 
Krull, and Gabriel dimensions for a module can be defined entirely in 
terms of the lattice of submodules, the authors develop these dimensions 
first in the context of modular lattices and then specialize to modules. This 
in turn entails the development of a small amount of lattice theory, the 
payoff for which is that the ensuing discussions using the lattice-theoretic 
language then emphasize the similarities among these dimensions. (While 
the lattice-theoretic formulations of Goldie and Krull dimensions are well 
known, the reformulation of Gabriel dimension in lattice-theoretic terms 
by Lanski [8] is not, and the present book provides the first expository de
velopment of it.) In order to have some interesting classes of rings at hand, 



BOOK REVIEWS 111 

several sections are devoted to developing normalizing extensions, group-
graded rings, and fixed rings. The book also includes over 200 exercises, 
and bibliographical comments to each chapter. 

The authors' point of view is that treating all these dimensions together 
provides a unifying approach to ring theory. However, a student just start
ing out in the area is likely to find the presentation here to be a forbidding 
forest of technical detail. In particular, the authors' straight-line axiomatic 
development (definition, lemma, theorem, proof,.,. ) includes hardly any 
discussion of the motivations for considering these dimensions. Experts, 
on the other hand, will already have their favorite sources for these con
cepts (excepting perhaps the lattice-theoretic treatment of Gabriel dimen
sion), such as [11] for Goldie dimension, [9] for Krull dimension, [6] for 
Gelfand-Kirillov dimension, and any number of homological algebra texts 
for homological dimension. 

Finally, the book provides a compendium of typographical errors. For 
instance, there are (in quantity) omitted, extra, or incorrect words (includ
ing incorrect mathematical terms) and inconsistent symbols (random vari
ations in size, font, italics, capitals). Occasionally definitions or theorems 
are mis-stated, hypotheses or portions of proofs are omitted, or proofs are 
incorrect. Goldie dimension suffers particularly: the Goldie dimension of 
a module is never explicitly defined (the reader must assume—correctly— 
that it equals the lattice-theoretically defined Goldie dimension applied to 
the lattice of submodules), and in one section Goldie dimension is inex
plicably transmuted into "coirreducible dimension." 

In conclusion, I can only recommend this book to readers with a large 
supply of both patience and red ink. 
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Let M be a closed compact oriented Riemannian surface. The Euler 
number of M, #(Af), is given by £(-1)' 'dim #<(.*ƒ; tf), where Hl{M\K) 
is the Zth de Rham cohomology group of M. This integer determines M 
up to diffeomorphism. The Gauss-Bonnet theorem states that 

X(M)= [ (1/2*)Q 
JM 

where Q is the curvature of the Levi-Civita connection on the tangent 
bundle of M. Now rf[(l/27r)£2] = 0 so it defines a cohomology class on 
M, its Euler class, and we may interpret the theorem as saying that the 
Euler number of M (an analytic invariant) is given by the integral over M 
of a certain characteristic cohomology class (a topological invariant). 

This simple theorem is at once the genesis and a paradigm for the index 
theory of elliptic operators, a theory which relates topological invariants of 
differential structures on the one hand to analytical invariants on the other. 
The central theorem in this theory is the Atiyah-Singer index theorem 
[AS]. Briefly, it says the following. Let M be a closed compact oriented 
manifold, let E — (EQ, E\,..., E^) be a family of complex vector bundles 
over M, and let d = (do, d\,..., <4-i) be a family of differential operators, 
dt mapping sections of Et to sections of 2?/+i- Suppose that di • di-\ — 
0 and that the differential complex (E, d) satisfies a technical condition 
called ellipticity. Roughly speaking, ellipticity means that the associated 
Laplacians (see below) differentiate in all possible directions. Ellipticity 
implies, among other things, that for all i, H'(E,d) = kerrf,-/ imagerf,-_i 
is a finite dimensional vector space. Define the index of (E, d) to be 

k 

I(E,d) = J^{-\y AimWiE^). 
i=0 


