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The idea of constructing prescribed algebraic number fields by means 
of the values of real or complex functions is usually referred to as the 
'Jugendtraum,' a word used by Kronecker in an 1880 letter to Dedekind [8]. 
Hubert made the realization of this idea the twelfth problem of his 1900 
address [7], adding that he considered "... this problem as one of the most 
profound and far-reaching in the theory of numbers and of functions." In 
the present book, Cassou-Noguès and Taylor give an exposition of Taylor's 
recent work on an "integral Jugendtraum" for the rings of integers of ray 
class fields of imaginary quadratic fields. The object of this work is to 
construct by means of elliptic functions explicit generators of such rings 
of integers either as algebras or as Galois modules. 

The two examples which motivated the Jugendtraum were provided by 
the finite abelian extensions of either the rational numbers Q or of an imag­
inary quadratic field. By the Kronecker-Weber Theorem, every abelian 
extension of Q is contained in a cyclotomic field of the form Q(C«), where 
£n = Qxp(2ni/n) is a primitive nth root of unity for some positive integer 
n. Thus the values of the function e(z) = exp(27r/z) at rational z generate 
all abelian extensions of Q. One can view these z as the points of finite 
order on the one-dimensional real torus R/Z. Suppose now that Q is re­
placed by an imaginary quadratic field K. In this case the torus R/Z may 
be replaced by a two-dimensional torus C/Q, where Q is a nonzero ideal 
of @K and we view A' as a fixed subfield of C. An elliptic function for 
C/Q is a meromorphic function of z e C whose value at z depends only 
on z modQ. A division point of C/Q is a point of finite order on C/Q. 
By work of Weber, Feuter and Hasse, there are elliptic functions for C/Q 
such that every abelian extension of K is contained in a ray class field gen­
erated over K by the values of these functions at suitable division points. 
There are different combinations of elliptic functions which generate the 
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abelian extensions of K in this way. For a precise statement of results of 
this kind, as well as the connection of these results to elliptic curves, see £ 
III and <J IX of the book under review, as well as [14]. 

Suppose now that L is an arbitrary number field, and that N is finite 
extension of L. Let (9M and (9L be the rings of integers of N and of 
L, respectively. Given the idea of constructing N by adjoining to L the 
values of certain functions, it is natural to ask how one can construct 
(9M by adjoining the values of such functions to (9L. Here are some results 
concerning this integral form of Kronecker's Jugendtraum in the two cases 
we have discussed. 

Suppose first that N = Q(C«) is a cyclotomic extension of Q, where 
Çn = exp(2ni/n) as before. A discriminant calculation shows that (9M is 
the ring Z[£„] obtained by adjoining £„ to Z. Thus if L is any subfield of 
N, one has (9M = ^[Cn]- In a similar way, the subfield N+ = Q(£« + C"1) 
of N has ring of integers Z[C« 4- C"1] = <*L+[GI + CiT1] w h e n L+ = L n N+. 
A remarkable result of M. N. Gras [6] is that the only abelian extensions 
N'/Q of prime degree / > 5 for which (fN

f = Z[a] for some a e (9N> are 
the real cyclotomic extensions N' = Q(Ç„ + Cnl)> where « = 2/ + 1. 

A similar pattern occurs for the abelian extensions N of an imaginary 
quadratic field K. Suppose sf is a nonzero integral ideal of ^ . The 
counterpart of the field Q(C«) is the ray class classfield K(s/) of K of 
conductor J / . The fact that (9Q^K) = Z[C«] suggests the problem of finding 
small subfields L of K($f) such that #K(S/) is monogenic over ^ , i.e., for 
which there is an a in ̂ (j/) for which ^ ( J / ) = @i\<*\ One would also like 
to give such an a explicitly as the division value of an elliptic function. 

In the book under review, Taylor and Cassou-Noguès construct an a for 
which <?K(J/) = ^L[OL\ when $f = 4ƒ for some odd ideal ƒ and when L is 
the ray class field ̂ (4) of conductor 4 ^ . They also prove that in this case, 
the ring of integers &$+ of the compositum ]V+ = LK(f) is generated by 
a single element /? over ̂ . The problem of descending L further towards 
A' is a delicate one. In [3] Taylor and Cassou-Noguès conjecture that for 
all J / , &K{st) is generated over (9K^ by a single element, and they prove 
this if $/ is prime to 6. Complementing these positive results, J. Cougnard 
has recently shown (cf. [4]) an elliptic counterpart to the above Theorem 
of M. N. Gras. 

Let us now return to the general situation of a finite Galois extension 
N/L of number fields. Let G = Gal(iV/L), and let L[G\ be the group ring 
of G with coefficients in L, Thus far we have considered the problem 
of finding algebra generators for N over L, or of (9M over (9L. A second 
natural problem is to find generators for TV as a module for L[G\, or for 
(9M as a module for various subrings of L[G\. The largest subring A^ of 
L[G] which acts on (9M is called the associated order of (9M in L[G\. Thus 
AL is the ring of y € L[G\ such that yft e (9N for all fi e <9M* Clearly 
<9i\Gr\ ç AL, and it is a theorem of E. Noether that (9L[G\ = AL if N/L is 
at most tamely ramified. 

The normal basis theorem states that N always has a single generator 
as an L[G\ module. The structure of (9M as a module for various subrings 
of the associated order A^ is a subject with a lively history of its own. A 
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comprehensive account of this up through 1983 is given by Fröhlich in [5]. 
The two results which have most closely motivated the book of Taylor and 
Cassou-Noguès concern abelian extensions N of L = Q. If N/Q is abelian 
and at most tamely ramified, Hubert and Speiser showed that (9^ is a free 
rank one module over AQ = Z[G], with a generator being given by the trace 
to N of a primitive root of unity in the minimal cyclotomic field which 
contains N. This was generalized by Leopoldt [11], who showed that for 
all abelian N/Q, <9N is a free rank one module for the associated order AQ. 
Leopoldt in fact determined AQ explicitly in terms of the ramification of 
N/Q, and he constructed a generator for ^ as a AQ module by means of 
Gauss sums. 

Suppose now that K is an imaginary quadratic field, and that P = kff* 
is an unramified principal prime ideal of K for which A = ±1 mod 4 ^ . 
Cassou-Noguès and Taylor study the counterpart of Leopoldt's Theorem 
when N is the ray classfield K(4Pm+r) and L is the ray classfield #(4Pr), 
where m and r are integers for which r > m > 1. In this case they explicitly 
determine the associated order Ax, of (9N in L[G\, and they show ffN is a 
locally free AL module. If 2 splits in K, they show that (9N is a free rank 
one AL module on a particular element a of (9$ which is constructed via 
elliptic functions. (A somewhat more general form of these results was 
originally shown by Taylor in [19 and 21].) In a forthcoming paper, A. 
Srivastav shows that the condition that 2 splits in K can be removed. 

A notable feature of the above results is that since r > m > 1, the 
extension N/L is wildly ramified at each place where it ramifies, these 
being the places of L over P. Thus far there has been relatively little success 
in using explicit elliptic and modular function techniques to analyze in a 
comparable way tamely ramified extensions in which the top field is abelian 
over an imaginary quadratic field. This is one of the central open problems 
in the theory; for some related results, see [5,12,1, 2]. While on the topic 
of open problems, the Jugendtraum has been cited in connection with the 
theory of Shimura varieties (see [10],and also [9, 13]) and with Stark's 
conjectures [15-18]. The application of these ideas to integral versions of 
Jugendtraum of the kind we have discussed remains to be considered. 

I will now discuss the chapters and organization of the book of Cassou-
Noguès and Taylor. Chapter I motivates the elliptic results to come by 
means of the analogous results for abelian extensions of Q. Chapters II 
and III contain general background material concerning classfield theory, 
elliptic functions, CM elliptic curves over C, and a very brief discussion 
of the reduction of elliptic curves defined over number fields. In Chapters 
IV and V the authors study Feuter's elliptic functions T(z) and T\{z) for 
a given period lattice Q ç C. These functions are simple expressions in 
the Weierstrass p-function p(z) and its derivative. From now on we will 
assume that Q is a nonzero ideal of (9K for some imaginary quadratic field 
K. The advantage of the Feuter functions is that in this case, they give rise 
to a model for the elliptic curve C/Q which is defined over K(4), and which 
has good reduction outside of 2. This leads to considerable control over the 
ideals generated by the values of T(z) and of T\(z) at division points d of 
C/Q. The guiding analogy used in Chapters IV and V is that the division 
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values T(d) of T(z) are the elliptic counterparts of 1 - £ when £ is a root of 
unity. Using work of Feuter, the authors develop the counterparts for these 
T(d) of various results from the theory of cyclotomic fields. For example, 
they find the elliptic counterparts of cyclotomic polynomials. I wish that 
the authors had expanded some of their motivational remarks in Chapters 
IV and V concerning the arithmetic of elliptic curves. Alternately, it would 
have been useful to have an appendix outlining algebraic proofs of some 
of the results proved via complex function theory. 

To consider the Galois module structure of #N the authors introduce 
several further ideas. The first, in Chapter VI, is the notion of an Abel 
resolvent function. This is a linear combination R(z) of translates by divi­
sion points of the elliptic function D(z) = T\(z)/T(z). As in other Galois 
module structure problems, one wishes to reduce questions about the Ga­
lois structure of a ring of integers to questions about the ideals generated 
by the values of resolvents. In Chapters VII and VIII the authors apply 
the theory of the modular function to this problem. The first step is to 
relate the value of a resolvent R(z) at a division point d of C/Q to the 
value of a particular modular function Ge(y) at the point y = yo in the 
upper half plane %? which corresponds to the lattice Q. The authors then 
apply the ^-expansion principle to Ga(yo), which in this setting states that 
if ƒ is a modular function, the singular values of ƒ (i.e., the values of ƒ 
at complex multiplication points yo £ %*) are algebraic integers provided 
that the Fourier coefficients of ƒ at every cusp are abelian algebraic in­
tegers. An analysis of the Fourier expansions of G#(y) and Ge(y)~l then 
leads to the desired results concerning R(d). In Chapter IX, the authors 
use the ^-expansion principle, coupled with congruences between various 
polynomials whose roots are singular values of modular functions, to prove 
various instances of the main Theorem of complex multiplication concern­
ing the action of Gal(K/K) on the division values of elliptic functions for 
C/Q. 

The last ingredient needed to study the structure of ^ as a module 
for its associated order AL in L[G\ is contained in Chapter X. This is the 
explicit determination of A/, for the N/L in question, and a proof that 
#N is locally free over AL. These purely local results are proved using 
formal groups and an interesting integral version of Lubin-Tate theory for 
the integers of the abelian extensions of local fields. 

The proofs of the main theorems are completed in Chapter X. In an 
appendix the Feuter functions T(z) and T\(z) are compared to the stan­
dard theta functions for C/Q, and their division values are compared to 
the elliptic units of Robert and Ramachandra. 

This book is well written, and it should be useful both to specialists and 
students. One suspects that Kronecker himself would have felt at home 
with it, since the use complex function theory is emphasized rather than 
that of modern algebraic geometry over the integers. There are several 
chapters devoted to the needed background material, so the book could 
serve as an advanced graduate course text, though it would be useful to 
discuss concurrently some other texts on the arithmetic of elliptic curves. 
The authors' approach of minimizing the use of algebraic geometry will be 
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popular with many readers but not with everyone. Taylor's more recent 
paper [20] on the rings of integers of CM fields illustrates more fully how 
algebraic geometry can enter into this subject. 
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