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1. The theory of classification of structures. I first met Saharon Shelah 
at the ICM in 1974. When I mentioned a result on universal locally finite 
groups which had been obtained recently by model theoretic methods, his 
reaction startled me: "Oh! I think I can prove a much better theorem, but 
tell me—what is a universal locally finite group?" At that time Shelah had 
a clear view of a very general theory of the construction and classification 
of algebraic systems of quite general types, based on remarkably superficial 
algebraic information, and less superficial model theoretic considerations. 
In the case of universal locally finite groups he applied this theory to justify 
his claim on the spot, after hearing the definition and a sketch of the earlier 
argument. 

The problem which Shelah's "classification theory" (also referred to as 
"stability theory") is intended to solve is the following. A class K of alge­
braic structures is specified, for example the class of universal locally finite 
groups (whatever that may mean). If the isomorphism types of the struc­
tures in K can be classified in terms of intelligible numerical invariants, 
the theory should enable us, in principle, to find this classification. If such 
a classification is not possible, the theory should provide convincing evi­
dence of this fact by enabling us to construct many structures in the class. 
The term "many" may mean various things, for example that a completely 
arbitrary structure can be set-theoretically encoded into the isomorphism 
type of a structure in the specified class. 

Shelah calls the critical dichotomy in classifcation theory a "structure/ 
nonstructure" theorem. The basic result of classification theory is that for 
certain reasonable classes of algebraic structures, the isomorphism types 
of structures in the class are either classifiable or quite wild; there is no 
middle ground. The paradigm for the "good" case is the class of alge­
braically closed fields, and analogs of transcendence degree play a role in 
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all good cases, whereas a paradigm for the "bad" case is the family of lin­
ear orderings; the set-theoretic methods used originally to construct many 
complicated linear orderings have been extended by Shelah to all cases in 
which there is no structure theory. 

For classification theory to fulfill its intended purpose, it should apply to 
quite general classes K of algebraic structures. Indeed, to have a rigorous 
formulation of classification theory at all, it is necessary at the outset to 
specify the context, that is to define the admissible families K to which the 
theory will apply. The fundamental theorem of classification theory will 
then be a rigorous structure/nonstructure theorem stating that every class 
K admitted by the specified context must fall on one side or the other of 
the stated dichotomy. 

In its first incarnation, the context for classification theory was a (mod­
ified) first order context: we consider classes K consisting of all the (some­
what saturated) models of an axiom system that can be formulated in a 
classical, finitary, first order language. This condition may be excessively 
restrictive—for example the notion "locally finite" cannot quite be formu­
lated in such a language, though the methods of the theory apply—but the 
book under consideration (like all books on the subject, so far) sticks to 
the first order context, and for good reason: the investigation of alternate 
contexts is still under way; the first order context still presents many open 
problems; and the ideas that emerge in the first order context dominate 
the subject. The paradigmatic form of classification theory was developed 
in [11]; and [14] describes a variant that would easily cover the case of 
universal locally finite groups, as well as more exotic classes of structures. 
It is a remarkable result of this theory that for the sort of classes under 
consideration, whenever an attempt at classification succeeds completely, 
the classification is necessarily in terms of invariants much like the ones 
familiar from standard examples. 

There are alternate contexts for classification theory, and these are of 
two kinds. One approach is to look for more general contexts which cap­
ture other examples of concrete interest. From the point of view of model 
theory this is the main line, and it has been vigorously pursued by Shelah 
and his epigones. Naturally, this line leads to a more complicated version 
of the theory. 

One may also look at more concrete contexts, arising for example in alge­
bra, which are not necessarily special cases of the abstract context. For ex­
ample the class KR of all pure-injective modules over a fixed ring R, prefer­
ably broken up into the subclasses corresponding to first order invariants, 
provides a slightly more concrete version of the "non-multidimensional 
stable s-saturated" case of the general theory, worked out vigorously by 
Ziegler, which at the same time connects to the study of finitely generated 
modules over artin algebras [10]. In a quite different vein, Lachlan has 
a theory of finite homogeneous structures [5] which is a "finitization" of 
classification theory according to the principle that "infinite" can be taken 
to mean "large enough." This version of classification theory lies entirely 
on the good side of the structure/nonstructure dichotomy, and produces a 
classification of each class admitted by the context into a finite number of 
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infinite families, plus a finite number of examples. As it happens, though 
the guiding ideas of this theory are closely modelled on ideas which first 
arise naturally in the context of the model theory of infinite structures, to 
make them work for finite structures requires an additional ingredient: the 
classification of the finite simple groups. 

Classification theory has meant a radical departure for model theory, 
and as such has spawned an extensive literature, much of it for internal 
consumption. There are also a number of articles aimed squarely at the 
general mathematical reader, notably the elegant and entertaining sketch 
in [4] and the more sober account of the paradigmatic case in [6]. Shelah's 
inimitable essays in this direction [12, 13] have a unique value. 

2. The structure of classification theory. Classification theory in the 
first order case is essentially a trope on the notion of free amalgamation, 
which as analyzed by model theorists involves two quite distinct notions. 
Given structures Mo ç M\,M2 ç M$, one wants the following notion to 
be meaningful: "M3 is the free amalgam of M\ and Mi over M0" In the 
case of algebraically closed fields, this would mean that M\ and Mi are free 
over MQ, and that M3 is the algebraic closure of their union. The notion of 
freeness, connected with transcendence degree (the key numerical invariant 
in this context), corresponds to a notion called "independence" (or in some 
context, "nonforking") in the general model theoretic setting, whereas the 
concept of algebraic closure is replaced by an even more general notion 
of "generation," referred to as the prime model over (i.e., generated by) 
M{ \JM2. 

The notion of independence used is probably the most subtle aspect of 
the whole theory, and one which is naturally encountered at the outset. The 
critical (and early) result was that if a first order class K does not allow a 
reasonable notion of independence, then K is a mess. There are two things 
that are likely to break down in setting up a notion of independence. If 
for example the structures in K carry linear orderings, then the notion is 
intrinsically asymmetrical: if a is to be independent from b one must in 
any case decide whether a is less than or greater than b. A class is called 
"stable" if it allows a reasonable, symmetric notion of independence. This 
notion of independence may lack finite character over the base Mo (though 
it is customary to require a weak form of this property in the definition 
of stability). If the notion of independence does have finite character then 
the class is called "superstable." Thus one must prove at the outset that 
unstable, or stable but not superstable classes, fall on the nonstructure side. 
The theory continues in this vein: build up a structure theory by steps, 
proving at each stage that failure of the theory at some point produces a 
nonstructure theorem. 

So much for independence. The next stage involves the notion of gener­
ation, or "prime" model. A prime model over a set A relative to K is one 
that embeds (elementarily) in all others. It is minimal if it does not embed 
properly in itself (over A). One needs prime models, and one needs them 
to be unique. There are two approaches at this point: restrict the classs 
K slightly to guarantee existence of prime models, then prove uniqueness, 
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or else worry only about prime models over Mi U M2, where M\, Mi are 
free over their intersection Mo, with all M,- structures in K (rather than 
subsets of such structures). If one takes the first approach, restricting K, 
then the second is superfluous; but the result is less powerful. In any case 
the analysis based on the second approach (focussing on prime models 
over special sets) was worked out after the first edition of [11] and only in 
a special case. 

The analysis so far gives one a good notion of the free amalgam of 
M\ U Mi over Mo: it is the prime model over M\ u M2, where Mi, Mi are 
assumed to be independent over Mo. If this prime model is not always 
minimal over M\ u Mi then again one proves a nonstructure theorem. If 
the class K survives the inquisition this far, then every model in it can be 
analyzed as generated by a series of free amalgamations of small models, 
where the series of amalgamation operations is naturally indexed by a 
tree. Some would say that this already is a structure theory; however the 
"orthodox" formulation of what it means to have a structure theory turns 
out, upon examination, to be equivalent to the well-foundedness of this 
tree. 

There is another feature of the theory which is seen quite clearly in 
classifying pure-injective modules. Indecomposable pure-injective mod­
ules correspond to "regular types" in the general theory. This is not the 
place to go into the background to this notion, which involves the theory of 
independence, but one is not surprised to see it used heavily in describing 
the factors that come into the general structure theory. For pure-injective 
modules, incidentally, the tree decomposition is trivial: the modules are 
represented as pure-injective hulls of direct sums of pure-injective indé­
composables, which is approximately the same thing as prime models over 
free amalgamations with trivial base. 

3. Some texts. 

((C'est le tissu des mots engagés dans l'oeuvre et agencés de façon à imposer un 
sens stable et autant que possible unique.)) —M. Jourdain. 

Each of the four levels of first order classification theory—independence 
(nonforking), generation (prime models), regular types, tree decomposi­
tion—builds on the previous ones, and books on the subject reflect this. 
The main texts available in addition to Baldwin's are [7, 8, 11]. Pillay 
gives a full account of independence and then runs through prime models 
and orthogonality in a convenient special case in his last forty pages. This 
remains a good introduction to the subject. Lascar goes a good deal farther 
by taking a more direct line through the subject, and another fifty pages: 
so in rapid but not unduly rushed succession he gives us independence, 
prime models in two contexts, regular types, and the decomposition in the 
case of a trivial tree (called by Shelah the nonmultidimensional case), with 
pleasant deviations into various special cases as the theory develops. 

Baldwin's treatment aims at a systematic account of the theory roughly 
as it stood in 1980, and is in four parts corresponding exactly to the four 
layers of the theory. One of his aims is to provide an axiomatic account 
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of the subject which will facilitate its transplantation to other contexts. 
Some of the side effects of this would probably confuse students, and the 
thoroughness of his coverage also makes it unsuitable for the innocent. 
The book is in part the English translation of [11] (which is ostensibly in 
English), but in addition Baldwin has taken great pains to incorporate a 
variety of approaches to the material which have developed in the mean­
time on three continents. (The first edition of [11] does not actually give 
the main theorem of classification theory, which was left for a subsequent 
journal article; Baldwin gets to the end of his version of the story.) There 
are full accounts of independence, prime models, regular types, and the 
tree decomposition for "acceptable" classes (this covers simultaneously the 
first order e-saturated case and the case of arbitrary models of co-stable the­
ories). The last section contains some of the main applications of classifi­
cation theory, including important results not covered by the other texts. 

The definitive account of the modified first order incarnation of clas­
sification theory is still the idiosyncratic [11], which amply repays close 
study. Shelah has completed the full first order case for countable theories 
[12], and this will be in the second edition of [11]. All expositions other 
than Shelah's sidestep the "nonstructure" theorems, which rely critically 
on set-theoretical methods rather different from the rest of the theory, and 
which have been awkward to fit into an expository scheme; Baldwin does 
give the one nonstructure theorem for which a model-theoretic proof is 
known. What this means in practice is that at the outset one is told a few 
trenchant properties satisfied by any class K which might have a structure 
theory, with reference to Shelah, and on this basis a remarkably general 
theory is erected. 
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In 1931 G. D. Birkhoff published the proof of one of the most profound 
theorems of this century [B]. This theorem, which has come to be known 
as the Birkhoff ergodic theorem, is remarkable in several ways. It is the 
only recent instance which comes to mind of a single theorem giving rise 
to a whole new branch of mathematics. Moreover it is one of those rare 
theorems whose content and significance can largely be understood by non-
mathematicians. 

The motivation for the ergodic theorem came from the work of Boltz-
mann and Gibbs on statistical mechanics. The mathematical question aris­
ing from their work was under what conditions the limit 
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exists and is independent of x G X, where ƒ : X —• R is a real valued 
function on a space X and T : X -+ X is a transformation. This limit is 
the average value of the function ƒ along the forward orbit of the trans­
formation T. 

Birkhoffs theorem concerns the case when (X,ju) is a finite measure 
space, ƒ is measurable, and T is a measurable transformation for which 
the equation A = T~l(A) is never satisfied unless A has measure 0 or full 
measure. Such transformations are called ergodic. The theorem is often 
paraphrased by saying that for ergodic transformations the time average 
equals the space average. In other words if we consider the transformation 
T as a dynamic which occurs every unit of time, then for almost all starting 
points x G X the average value of the function ƒ on the orbit of x as it 
evolves through time exists and is equal to fx fdju, the average value of 
the function ƒ on the space X. Intuitively, if we consider the case when 
ƒ is 1 on a measurable set A and 0 elsewhere, then this says that a typical 
particle x in an ergodic system will spend a proportion of its time in A 
equal to the proportion of the total volume in A. Except for the technical 
concept of measure 0 implicit in the conclusion about almost all x, this is 
easily explainable to a nonmathematician. 


