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are made about oscillatory and evolutionary spectra. The object is to see 
whether a local version of the type of spectral representation one has for 
a stationary process might hold for some nonstationary processes. Finally 
there are some words about harmonizable processes (a class of processes 
introduced by Loève) where a Fourier representation for the process is 
possible but not generally in terms of a random spectral function with 
orthogonal increments. 

The book is extensively illustrated by many examples and illustrations. 
The second volume has over 800 references to an extensive literature in 
theory and applications with brief comments on the text in volume one or 
on the references. The work provides a much more rapid introduction to 
the probabilistic background, the extensive applications and basic results 
on stationary processes and spectral analysis than is possible in a conven
tional exposition and is excellent in this way. A reader who wants a more 
formal background should supplement the book by referring to other texts 
or to original papers. The two volumes are incredibly free of all except 
trivial typographical errors. The author is to be hailed for his extended 
and richly rewarding exposition. 
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The appearance of this book marks an important point in the develop
ment of the theory of rational representations of algebraic groups. Many 
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different techniques have been introduced into this theory, especially dur
ing the last fifteen years. Jantzen's book gives the first comprehensive ac
count of these new techniques, which often rely heavily on sophisticated 
algebraic geometry. Though firmly rooted in clear cut questions such as 
"What are the irreducible representations of SLn{p) in characteristic pT 
the subject has become rather specialized. In order to explain how this 
has come about (and in an effort to avoid writing a review only for those 
whose time would be better spent browsing the book) I shall describe in 
some detail the basic framework of the theory. On grounds of space and 
ignorance, I shall concentrate on a few points. I apologize in advance to the 
many workers whose valuable contributions will be passed over in silence. 

Throughout, G shall denote a semisimple algebraic group over an alge
braically closed field K of characteristic p > 0. Such groups were classified 
by Chevalley in 1956/1958, [1], and include the classical groups SLn(K), 
Spn(K), SOn(K). Surprisingly, this classification is independent of p\ it is 
described in terms of root systems in a manner similar to the classifica
tion of semisimple complex Lie algebras. In fact Chevalley has shown, [2], 
that a semisimple group G over K may be constructed from a complex 
semisimple Lie algebra g (having the same root system as G) by means 
of an integral lattice gz in g. One of the many benefits of the Chevalley 
construction is to give a way of defining G over Z (as a group scheme) and 
thereby opening the door to integral and modular (i.e. reduction mod/?) 
techniques of representation theory. This is one of the main lines of cur
rent work and one to which we shall return. 

A finite dimensional rational (j-module (called simply a G-module in 
what follows) is a finite dimensional üf-vector space V on which G acts in 
such a way that the representation G —• GL(V) is a morphism of algebraic 
groups. The main focus of research, and the central problem in the area, 
is the determination of all irreducible G-modules. Despite a great deal of 
activity, the problem has been solved only in a few special cases (including 
SLi{K)) mostly due to Brauer, Braden and Jantzen. However in general 
one does have a nice parametrization by dominant weights (due to Cartan-
Chevalley) of the set of irreducible G-modules. This is achieved by induced 
modules and goes as follows. In G fix a maximal torus T (isomorphic to a 
direct product of r copies of K*, the multiplicative group of the field K) 
and let A be the set of algebraic group homomorphisms A: T —• K*. Then 
A is an abelian group (called the lattice of integral weights) isomorphic 
to the free abelian group Zr of r-tuples of integers. Let B be a Borel (i.e. 
maximal solvable) subgroup containing T (in the case G = SLn(K) one can 
take for T the diagonal matrices and for B the upper triangular matrices). 
Each integral weight A extends uniquely to a representation B -+ K* and 
so defines a one-dimensional ^-module K^ We then have Ind^A^, the G-
module induced (in the sense of algebraic group theory) from K^ Inside 
A is the set A+ of dominant weights (corresponding to r-tuples of non-
negative integers, for G simply connected). For A dominant, Indf Kk has a 
unique irreducible submodule L(A) say. The modules L(À) (A dominant) 
are pairwise nonisomorphic and each irreducible G-module is isomorphic 
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to some L(X). Not only does this construction provide a natural labelling 
of the irreducible G-modules but it also provides a great deal of additional 
information. 

There is a character theory of G-modules, which is analogous (and 
closely related to) the character theory of finite groups. A T-module V 
is the direct sum of its weight spaces Vk = {v e V: tv — X(t)v for all 
t € T}, A e A. The formal character ch V of a T-module (or G-module) V 
records the weight space dimensions: precisely ch V = ^ ^ ( d i m Vx)ek, 
an element of the integral group ring ZA (with canonical basis {el : A e A}). 
Two G-modules have the same composition factors (counting multiplici
ties) if and only if they have the same character. In the characteristic 0 case 
L(X) = Ind^A t̂ (A dominant) and chL(A) is given by the famous character 
formula of H. Weyl (originally proved for semisimple groups over C by us
ing integration over a compact form). The central problem may therefore 
be interpreted as a search for a p-analogue of WeyPs character formula. 
A solution to this problem would give (via a theorem of R. Steinberg) the 
Brauer characters of the irreducible modules in the natural characteristic 
of the finite groups of Lie type as well as those for the symmetric groups 
in all characteristics (via a theorem of G. D. James). 

An extra feature in characteristic p is the Frobenius morphism Fr: G —• 
G. For a suitable realisation of G as a group of matrices this is given by 
raising the matrix entries to the pth power. Given a G-module V one thus 
gets a new G-module VFr by composing the representation G -> GL(V) 
with the Frobenius morphism. Each dominant weight A has a p-adic ex
pansion A — Ao + pX\ H h pJXj (we regard X as an r-tuple of nonnegative 
integers and expand componentwise). Steinberg's tensor product theorem, 
[3], then asserts that L(X) is isomorphic to L(A0) ® L(X\)Fr <g> • ® L(XJ)FTJ . 
This reduces the problem to the determination of the L(X) where all the 
components of X lie between 0 and p - 1 (such X are called restricted). 
In the case of SL2{K) the dominant wieghts correspond to nonnegative 
integers and L(i) is Sl(E), the Zth symmetric power of the natural mod
ule E (of column vectors) for 0 < i < p - 1. In general one has no such 
pleasant description of the L(X) for X restricted. However, there is a con
jecture of Lisztig, [4], from which (if true) the characters of the L{X) may 
be computed, provided that p is large compared to the rank of G. 

The most important new techniques are probably the infinitesimal meth
od and the cohomology of line bundles on the space G/B. The infinites
imal method is to compare the representation theory of G with that of 
certain finite dimensional algebras u\ c U2 c • • • (introduced by J. E. 
Humphreys); ur is called the rth hyperalgebra of G and has dimension 
pr dimG. These algebras live in the dual HomK(K[G], K) of the coordinate 
ring and the union U^iu^ has the same category of finite dimensional 
modules as G (the Verma Conjecture, now a theorem thanks to Sullivan 
and Cline-Parshall-Scott). One can then compare the representation theory 
of G (simple modules, principal indecomposable modules, cohomology... ) 
with that of the algebras ur. The introduction of the hyperalgebras has led 
to elegant new proofs of established results (e.g. Steinberg's tensor product 
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theorem, [5]; Hilbert's 14th problem for reductive groups, [6], originally 
solved by Haboush, [7]). The algebras ur are in many ways similar to the 
group algebras KG(pr) (of the subgroups G(pr) of G of points defined over 
a finite field) but rather better behaved. In fact the ur behave like normal 
subgroups of G (this can be made more precise using the language of group 
schemes). One is thus in the unreasonably fortunate position of having all 
the tightness of structure implied by the (almost) simplicity of G and at 
the same time having a rich Clifford theory associated with infinitely many 
"normal" algebras ur. 

The cohomology of line bundles is a rather more sophisticated affair. 
The coset space G/B has the structure of a projective variety and every 
homomorphism X: T -> K* gives rise to a line bundle Sfx on G/B. The 
induced module Ind#A^ is then the space of global sections T{G/B,2i) 
and, more generally, the derived functor modules R^nd^Kx (induction 
from B to G is only left exact) may be interpreted as the sheaf cohomology 
H'iG/B,^). One can then (as in the work of H. H. Andersen) prove 
results on Ind^A^ by proving them for all H'iG/B,^) (where certain 
inductive arguments may work better). This set up exhibits an interesting 
and complicated interplay between the representation theory of G and the 
geometry of G/B (and certain subvarieties called Schubert varieties). A key 
geometric result which has many representation-theoretic consequences is 
Kempf s vanishing theorem, which states that Hl(G/B,Jï?x) = 0 for all / > 
0 if A is dominant. (Kempf s original proof is entirely geometric but there 
are now almost entirely geometric proofs due to Andersen and Haboush.) 
To make matters still more interesting and complicated, Andersen has 
found it profitable in recent investigations to work over a principal ideal 
domain A instead of the field K. This has many advantages and allows 
one, by passing through the integers, to compare the theory at different 
characteristics (in the spirit of Brauer theory for finite groups). Probably 
the most important feature is the new light shed on the Weyl modules 
V(fi), ju dominant. By definition V(ju) is the dual module of Ind^A^, for 
X = -wot* where Wo is the longest element of the Weyl group. The character 
of V(pt) is given by Weyl's character formula. By working over a valuation 
ring and then using base change, Andersen produces a filtration V(ju) = 
V{ju)° D V(jLt)1 D ••• (with V{juY = 0 for i > 0). The top quotient 
V(ju)°/V(jLiy is L(ju) and there is an explicit formula for D ^ c h F ^ ) ' . 
This is known as Jantzen's sum formula (it was obtained in almost all 
cases by Jantzen by use of a contravariant form) and, as the author points 
out (p. 297) "This sum formula together with results in earlier chapters is, 
so far, the most efficient tool for calculating chL(/*)." 

There is, unfortunately, a high price to be paid for working over a prin
cipal ideal domain (or more general ground ring). In dealing with an al
gebraic group 0 over Z, say, we can no longer adopt the familiar and 
comforting convention of identifying 0 with its set of points in some alge
braically closed field but rather must take the Demazure-Gabriel approach 
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that 0 is a functor from commutative rings to groups. This scheme theo
retic point of view must then be taken in connection with quotient spaces, 
representation theory, sheaf cohomology 

Part I of the book is devoted to the representation theory (and coho
mology) of algebraic groups from the very general scheme-theoretic point 
of view indicated above, as well as groups over a general ground ring, 
this includes the representation theory of infinitesimal groups. The first 
part serves as a solid foundation for the representation theory of reductive 
groups (such as GLn) given in Part II. The treatment in the first part is 
self contained, except that the reader is referred to Demazure-Gabriel, [8], 
for proofs at a couple of points and is expected to be familiar with sheaf 
cohomology as set up in Hartshorne, [9, Chapter III], say. 

Part II is aimed at the representation theory of reductive groups over al
gebraically closed fields and in particular at the irreducible modules L(À). 
Among the many topics covered in the book and not mentioned above 
are: Jantzen's translation functors, cohomology of infinitesimal groups, 
and line bundles on Schubert varieties. The book is a systematic, concise 
and authorative treatment of the subject. Most of the material is not avail
able elsewhere in book form (and some not in any form). The work is 
remarkably complete and up to date and has a comprehensive bibliogra
phy. This book will no doubt be used as a text for numerous study groups 
and will surely be the research worker's bible for mahy years to come. 
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