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The theory of Hubert modular surfaces is a generalisation of the classi­
cal theory of automorphic forms, and in many ways it is one of the easiest 
generalisations. It was started by D. Hubert at the end of the last century, 
with the motivation to enhance the theory of analytic functions of several 
complex variables. He inspired O. Blumenthal to take up the subject, and 
sometimes his name is added to that of Hilbert. However, neither man got 
very far, and only after the general theory of complex manifolds had ad­
vanced sufficiently could progress be made in this special case. In modern 
times the subject has been revived by M. Rapoport and F. Hirzebruch. The 
theory of Hilbert modular surfaces mixes the theory of automorphic forms, 
arithmetic algebraic geometry (especially Shimura-varieties) and the the­
ory of classical complex algebraic surfaces. It thus seems appropriate to 
give short overviews of recent developments in these subjects, and after 
that we try to explain how they specialize to the case of Hilbert modular 
surfaces. Needless to say, I tend to oversimplify the situation; for details 
one should consult the literature. 

The theory of automorphic forms started with the classical elliptic mod­
ular functions (for a modern account see [La]), and has developed into a 
theory about reductive groups. Let us try to explain how this happened: 
Classically one considers the upper halfplane H of complex numbers with 
positive imaginary part, on which the group SL(2,R)/{±1} acts by the 
usual (az + b)/(cz + rf)-rule. One further chooses a subgroup T of finite 
index in SL(2, Z), and considers holomorphic functions ƒ (z) which trans­
form under F according to a certain factor of automorphy, and which 
are holomorphic at infinity (this amounts to a certain growth-condition). 
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There is a distinction between two types of automorphic forms, Eisenstein-
series and cusp-forms: The former are certain rather well-understood se­
ries, which define automorphic forms and are characterised by their asymp-
totics at infinity. The latter are automorphic forms which vanish at infin­
ity, and their properties are much more mysterious. The whole space of 
automorphic forms is the direct sum of the cusp-forms and the Eisenstein-
series. 

On these spaces there is an operation by Hecke-operators: For any el­
ement y e GL(2,Q) the intersection of T and yFy~l has finite index in 
T, and the y-transform of an automorphic form is invariant under this 
subgroup. Summing over these transforms under a set of representatives 
for T modulo the subgroup gives a new automorphic form, and this way 
we obtain a huge algebra (the Hecke-algebra) operating on the space of au­
tomorphic forms. Now one decomposes everything into eigenspaces under 
this algebra, which usually have dimension one. 

One can generalise this by considering nonholomorphic functions (which 
however are still eigenfunctions for the Laplacian). The whole theory then 
becomes very group-theoretic: The upper half-plane H is a symmetric 
space, namely the quotient H = G/K, with G = SL(2, R) and K - SO(2, R) = 
maximal compact subgroup of G. Then functions on H/T correspond to 
AT-invariant functions on the G-homogeneous space G/T, and automorphic 
forms to A^-eigenfunctions. Automorphic forms in the previous sense now 
correspond to irreducible constituents (under the (/-operation) in the space 
of functions on G/T: Such constituents always contain certain canonical 
^-eigenvectors, which are the automorphic forms in the previous sense. 
For example, holomorphic automorphic forms are related to discrete se­
ries representations. 

Finally one passes to an adelic formulation: Instead of SL(2, R)/SL(2, Z) 
we consider SL(2, A)/SL(2,Q), where A is the ring of adeles, and we re­
place SO(2,R) by the product SO(2,R) x SL(2,Z), which is a maximal 
compact subgroup in SL(2, A). We try to decompose the space of func­
tions on SL(2, A)/SL(2,Q) into irreducible (under SL(2, A)) components. 
These are restricted tensorproducts of irreducible representations of the lo­
cal groups SL(2, R) respectively SL(2, Q^). The representation of SL(2, R) 
is our previous one, while the representations of the factors SL(2,QP) 
describe the combinatorics of the Hecke-operators. It turns out that this 
very much simplifies these combinatorics as well as the rest of the theory, 
mainly since the structure of the group SL(2, Q) is much simpler than that 
of SL(2, Z), because of the Bruhat-decomposition. Finally we have to ad­
mit that for a good theory it is better to replace SL(2) by GL(2). If the 
reader has been willing to follow us so far he can now proceed to read 
the lecture notes of Jacquet-Langlands or Weil [JL and W], which give the 
general theory of automorphic forms on GL(2) over any numberfield (not 
just Q). In general one tries to replace GL(2) by an arbitrary reductive 
algebraic group G over Q, and one wants to decompose G(A)/(J(Q). Again 
there is a decomposition into cusp-forms and Eisenstein-series. The latter 
are associated to forms on groups of lower dimension, and should be han­
dled by induction (which still poses quite a variety of problems, see [L2]). 
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This leaves cusp-forms, and it is quite hard to understand them. There 
are general but mostly unproven conjectures by Langlands relating them to 
Galois-representations. The only general method of attack presently known 
is the Selberg-trace formula: This expresses the trace of certain operators 
on the space of cusp-forms (on G(A)/G(Q)) as a sum of terms parametrised 
by conjugacy classes in G(Q). In principle these traces determine the rep­
resentation. However the formulas tend to be so complicated that the best 
one can do is to compare them to similar complicated objects. This way 
one sometimes can find relations between cusp-forms on different groups, 
by comparing the corresponding trace-formulas. For example one obtains 
a relation between forms on GL(2) and on units of quaternion-algebras 
(see [JL]), or between GL(2)'s over different fields [LI]. However it seems 
fair to say that for general groups the technical problems posed by the 
trace-formula still have not been completely mastered. 

In the case of Hubert modular surfaces we deal with the case of GL(2) 
over a real quadratic numberfield. Here the technicalities of the trace-
formula are understood, and there are also alternate means to construct 
and classify automorphic forms. So from the point of view of automorphic 
forms many basic problems have been solved, and we can hope to use this 
knowledge to interact with other aspects of the situation. 

The second relevant point of view is that of Shimura-varieties. Classi­
cally the quotient Y(T) = H/T is a Riemann-surface which is algebraic, 
that is by adding finitely many points (the cusps) one obtains a compact 
Riemann surface X(T). This surface is an algebraic curve, so that it can 
be described as the common set of zeroes, in complex projective space, of 
finitely many homogeneous polynomials. Moreover it turns out that X(F) 
is already defined over a numberfield, that is the coefficients of the homo­
geneous polynomials above can be chosen in this numberfield. Finally one 
can even give models over the integers of this field. All this follows easily 
from the fact that Y(T) parametrises elliptic curves (with some "level-
structure"), which gives an intrinsic algebraic definition. As the relevant 
moduli-problem is defined over the integers of some numberfield this must 
also hold for the moduli-space itself. 

In higher dimensions the quotients of hermitian symmetric spaces under 
arithmetic groups are again quasiprojective algebraic varieties, which can 
be compactified to normal projective algebraic varieties (the Baily-Borel 
compactification) or to complex algebraic manifolds where infinity is a 
divisor with normal crossings (the toroidal compactification). Again one 
can show that these are defined over certain specific numberfields (although 
this is much harder now), but there seems to be no general method to get 
models over the integers. However many important examples are moduli-
spaces of certain types of abelian varieties (usually with some condition on 
their endomorphisms), which easily gives models over numberfields and 
sometimes over their integers. These have played an important role for 
testing certain general conjectures about varieties over numberfields. For 
example, by counting the number of points in finite fields (for this we need 
an integral model) one can define the zetafunction of an algebraic variety. 
This is an analytic function of a complex variable s, defined by an infinite 
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Euler-product which converges in some right halfplane Re(s) » 0, and one 
conjectures that it extends meromorphically to the whole complex plane, 
and satisfies a functional equation. For some Shimura-varieties this can 
be checked (following ideas of Langlands) by relating the zetafunction to 
automorphic forms. The technical tools involved are the trace-formula and 
the combinatorial description of points over finite fields. 

In the case of Hubert modular surfaces all these techniques apply: They 
form the moduli-space for abelian surfaces with multiplication by the in­
tegers of the real quadratic field, which defines a moduli-space over the 
integers. Also the counting techniques and the trace-formula work, so that 
the zetafunction is in fact given by automorphic forms. Finally one can 
check the Tate-conjecture, which claims that the order of vanishing of the 
zetafunction at a certain s-value is given by the rank of the Néron-Severi 
group of the surface, which in turn should be determined by the Galois 
representation of the second /-adic cohomology-group. An important tool 
here is the fact that one naturally has a whole bunch of curves on these 
surfaces. 

Finally there is the theory of complex algebraic surfaces. These have 
been classified around the turn of the century. (For a modern account see 
[BPV].) To classify a given surface one first has to construct a minimal 
model, by blowing down exceptional curves. Then one should compute 
the Kodaira-dimension, which can take the values -oo, 0,1 or 2. If this is 
different from 2 some further invariants suffice to determine the structure 
of the surface (like being rational, or a K3-surface, etc.), by looking into 
a suitable table. (As usual for classifications the subject has a botanical 
flavour.) However for Kodaira-dimension 2 (the surfaces of general type) 
the classification is rather incomplete, that is we do not know very much 
about the structure of such surfaces. In this sense the classification still 
needs some refining. 

For Hubert modular surfaces one naturally tries to locate them in this 
zoo of algebraic surfaces. First it is already an interesting problem to de­
termine a minimal model, which can be solved except if the surface is of 
general type (which however most of them are). Then one has to determine 
numerical invariants, which are usually given by some number-theory, for 
example by special values of L-series. Finally one follows the procedure 
outlined above. 

Another special feature of Hubert modular surfaces is the relation to sin­
gularities. In general a Hilbert modular surface has singularities at infinity 
(which are resolved by the toroidal compactification) and at the fixed-
points where the group does not operate freely. The latter are quotient-
singularities and again allow an explicit resolution (this is much more dif­
ficult in higher dimensions). This way one obtains very interesting exam­
ples of surface-singularities and their resolutions. This third aspect of the 
theory (that is Hilbert modular surfaces as special examples of complex 
algebraic surfaces) has been very much the subject of F. Hirzebruch's work 
in the field during the seventies. 
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Now as we have explored the territory we can try to locate the book in 
it. In short it can be said that it follows very much the Bonn school, which 
is not surprising considering the biography of the author. Most of it deals 
with Hubert modular surfaces over the complex numbers: The author gives 
their definition, resolves the singularities at the cusps and at the elliptic 
fixed points, computes global invariants, introduces the curves FN and TN 
on them which are given naturally via the modular interpretation, and 
relates the singular cohomology to modular forms. After that the surfaces 
are classified, examples are given, and the embedding of Hubert modular 
surfaces into the Siegel threefold (classifying principally polarised abelian 
surfaces) is studied. So far the book follows very much in style and content 
the work of F. Hirzebruch. At the end it gets more arithmetic, as the 
proof of the Tate-conjecture (due to Harder, Langlands and Rapoport) is 
described. All in all it is well written but by no means selfcontained, as 
sometimes arguments from the general theory which are not specific to the 
subject are left to the reader. So it can be easily understood by somebody 
with a good general knowledge about complex surfaces, but probably not 
by a beginner in the field. Also on occasion there are slight lapses in the 
proofs, which provides the reader with some exercises (the only ones in 
the book). As tradition demands that the reviewer has to find at least one 
mistake we give here as an example the liberal use of Kodaira vanishing 
on p. 72. 

However, all in all I enjoyed my reading, and recommend the book to 
anybody interested in the subject. 
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