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the derivation of the same results in [3] is given by more powerful but less 
direct methods. 

However this may be, the style and the methods have the advantange 
of showing very concretely, and in an authentically muscovite ambience, 
the relations between the theory of singularities and a part of "symplectic 
topology," two specialities of the Arnold school. 
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Group representations are the building blocks of harmonic analysis, a 
subject that dates historically from Fourier's use of superposition of sines 
and cosines in separating variables to study solutions of the heat equation. 
Fourier's theory generalizes in many directions; one of them is analysis of 
a space of complex-valued functions on a set on which a group acts. 

A group representation is a homomorphism of the given group into in-
vertible linear transformations on a complex vector space, usually topol-
ogized and usually with some continuity property in the group variable. 
If R is a group representation on the vector space V, we obtain some 
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complex-valued functions on the group as matrix coefficients (R(g)u,v), 
where u is in V and v is in the dual of V. When R can be expressed as 
a sum or integral of representations, the matrix coefficients decompose in 
corresponding fashion. The ultimate reduction occurs if the constituent 
representations are irreducible, i.e., have no nontrivial invariant subspaces 
and in particular have no nontrivial invariant direct sum decompositions. 

In one case of the kind considered by Fourier, the group in retrospect 
was the orthogonal group 0(2) in two dimensions. The solutions of the 
heat equation for the case in question are complex-valued functions of 
(x, t) with x in [0, 2n] with the ends identified and with t in [0, oo). If we 
identify [0,2n] with the unit circle, then 0(2) acts on these functions by 
its effect in the x variable. The sines and cosines arise from matrix coeffi
cients of irreducible representations, one for each integer n > 0. Fourier's 
method was to solve the equation by separation of variables. Equivalently, 
for each t, we decompose a solution u(x, t) of the heat equation at t into 
its x constituents under the action of 0(2). When we use the equation, we 
obtain a restriction on the t dependence and are led to 

oo 

u(x, 0 = J ^ e~n \an cos nx + bn sin nx). 
n=0 

The effect of the irreducibility of the nth representation of 0(2) is to 
constrain the corresponding t dependence as much as possible. In fact, the 
t dependence above was determined up to a constant factor as e~n l. 

In the above case, the representations are unitary in the sense that they 
act in Hilbert spaces and the operators R(g) are always unitary. Such 
representations have the property that the orthogonal complement of an 
invariant subspace is again an invariant subspace. This property facilitates 
the decomposition into irreducible constituents. 

In fact, the techniques of harmonic analysis are severely limited in han
dling representations that are not unitary. For this reason, many of the 
successes of the method occur when the underlying set for the space of 
functions has a group-invariant measure; the space of functions may be 
taken to be the Hilbert space of square integrable functions, and then the 
natural representation of the group on this space of functions is unitary. 
Correspondingly, the interest in identifying and manipulating representa
tions is greatest in the case of irreducible representations that are unitary. 

To get concrete results from harmonic analysis, one needs concrete 
information about the irreducible unitary representations of particular 
groups. The initial theory for finite groups is due to Frobenius and Schur; 
the end theory for finite groups is not yet complete, not even for finite 
simple groups. For compact connected Lie groups, the irreducible uni
tary representations are fully understood. They are finite-dimensional 
and are parametrized as a consequence of the Cartan-Weyl theory of the 
1920s. The centerpieces of this theory are the Theorem of the Highest 
Weight and the Weyl Character Formula. The celebrated Borel-Weil The
orem completes the theory for compact connected Lie groups by giving 
global realizations of the representations in terms of complex analysis. 
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For certain specific noncompact nonabelian connected Lie groups, the ir
reducible unitary representations were identified in the 1930s and 1940s by 
von Neumann, Wigner, Bargmann, and Gelfand-Naimark. 

One can ask for what classes of particular groups it might be helpful to 
have a concrete parametrization of the irreducible unitary representations. 
Lie groups are a natural class. But there are too many Lie groups; finite 
groups are examples, and the representation theory of finite groups is far 
from completely understood. Connected Lie groups are a narrower natural 
class that eliminates finite groups from consideration, but for technical 
analytic reasons one wants to include some additional hypothesis. One 
such hypothesis is "type I." A stunning theorem of Duflo (cf. [2]), building 
on work of Mackey from the 1950s, reduces the parametrization of the 
irreducible unitary representations of all type I connected Lie groups to 
the case of Lie groups that are "semisimple." 

A connected Lie group is semisimple if its Lie algebra is the direct sum of 
nonabelian ideals that contain no proper subideals. The groups SL(n,R) 
and SL(n, C) are examples. So is any other closed connected Lie group of 
real or complex matrices that is closed under conjugate transpose and has 
finite center. The most general example is an arbitrary covering group of 
such a group of matrices. 

The irreducible unitary representations of connected semisimple Lie 
groups are the topic of the book under review. Despite great efforts, their 
classification remains an unsolved problem. A frustrating aspect of the 
theory is that one must go outside the class of groups under study in order 
to use arguments that induct on the dimension of the group. It is nec
essary to allow the group to be somewhat disconnected and to allow the 
Lie algebra to have abelian factors. There are several ways to enlarge the 
class of groups to allow an induction, and people differ on which one is 
best. In addition, there is disagreement whether the underlying connected 
semisimple group should be restricted to have finite center or further re
stricted so as to be a matrix group. Vogan makes a choice (different from 
everyone else's), and the result is his definition of "reductive Lie group." 

So much for the book's title and the motivation for the study. The in-
sides of the book divide neatly into two halves separated by an "interlude." 

The first half discusses constructions of representations, particularly 
unitary representations. After an introductory overview, it begins with 
a long careful essay on compact Lie groups. One advantage of Vogan's 
definition of "reductive" is that all compact Lie groups are reductive. The 
chapter is beautifully written. Simultaneously it explains the traditional 
connected case and it shows the extent to which the theory in the dis
connected case reduces to the theory for the finite group of components. 
The novice can learn the traditional theory here; the expert should pay 
attention to the subtle details of how the disconnectedness is handled. 

The remaining chapters of the first half deal with constructions of repre
sentations in the noncompact case. A reductive group G in Vogan's sense 
has a maximal compact subgroup K. One important feature of the group G 
is that reducibility of representations of G can be understood on the level 
of the action of K and of the action of the Lie algebra of G. This theme 
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derives from early work of Harish-Chandra, and it plays an increasingly 
important role as Vogan's book unfolds, beginning in Chapter 2. 

After Vogan describes the real analysis concepts of parabolic induc
tion and complementary series, he returns to the complex analytic theme 
begun in the discussion of the Borel-Weil Theorem. He describes Harish-
Chandra's remarkable parametrization of "discrete series" representations 
and Schmid's global realization of these representations. The first half 
of the book ends triumphantly with the algebraic analog/generalization 
of this construction—cohomological parabolic induction—as introduced 
by Zuckerman [13] and elaborated by Vogan [9]. The final theorem is 
Vogan's own [10], describing how all the irreducible unitary representa
tions of GL{n, R) may be obtained by suitably combining the constructions 
of parabolic induction, cohomological parabolic induction, and comple
mentary series, starting from the trivial representation. 

The second half of the book is about unipotent representations. 
Vogan's hope is that the irreducible unitary representations for general 
G can be obtained by parabolic induction, cohomological parabolic induc
tion, and complementary series constructions, starting from a finite set 
of representations he would like to characterize as "unipotent." As he 
says of unipotent representations, "All that they lack is a complete def
inition, a reasonable construction, a nice general proof of unitarity, and 
a good character theory." Five different tentative approaches to unipo
tent representations, some of them joint work with Dan Barbasch, occupy 
five chapters of the second half of the book. All of them are principally 
algebraic, no doubt betraying the author's personal taste. Yet the range 
of mathematics involved in these chapters is truly broad, extending from 
finite simple groups through algebraic number theory to noncommutative 
algebraic geometry. 

In the field of representation theory of arbitrary noncompact reductive 
Lie groups, there are a few general books (Warner [12], Vogan [9], Knapp 
[5], and Wallach [11]) and a few mildly specialized books (Varadarajan [8], 
Borel-Wallach [1], and Knapp [6]). In addition, there are several books that 
develop aspects of representation theory in connection with the study of 
symmetric spaces (e.g., Helgason [4], Schlichtkrull [7], and Flensted-Jensen 
[3]). The present Vogan book fits into the category of mildly specialized 
books. But it is different in spirit from the rest, looking forward to un
known mathematics rather than merely organizing what is known. 

The book gives real insight both into the status of a major unsolved 
problem and into the the thinking of a first-rate mathematician on solving 
the problem. Beginners and experts alike can profit from Vogan's ability 
to explain fine detail accurately without sacrificing a clear emphasis on the 
main ideas. The lack of an index is more than offset by extensive cross-
referencing, incisive historical comments, and a lengthy bibliography. The 
book is printed on acid-free paper, as should be true of all mathematics 
books of any note. 
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