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Mathematical developments can be viewed as a river fed from 
numerous tributaries and giving rise to branching streams of vig­
orous activity, quiet meandering backwaters which may become 
brackish and stagnate or possibly return with renewed vigour to the 
main stream. Multiparameter spectral theory, of which McGhee 
and Picard's book deals with a particular but central aspect, is an 
example of such an analogy. 

In order to discuss the central questions of multiparameter the­
ory and its relation to other branches of classical and functional 
analysis it is necessary to formulate the general problem. 

Suppose one has k separable Hubert spaces Hr> 1 < r < k 
and a collection of linear operators Tr, Vrs, 1 < s < k, defined 
on these spaces. One now forms the k linear combinations 

(1) Wr(X) = Tr + ^KVrs> l<r<k 

where Às e C are scalars. The central question is then to deter­
mine the scalars A = (X{, . . . , Xk) e C such that all the linear 
operators Wr(k) have nonzero kernels. Briefly then, we have a 
multiparameter spectral problem invoking a plethora of questions 
thus generalising in a nontrivial manner one-parameter spectral 
theory. In particular it is essential to develop a framework in 
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which to discuss the multiparameter generalisation of the classical 
representation theorem 

(2) A=fxdEÀ, 

for a linear operator A defined on a Hubert space H and whose 
spectral measure is Ek . 

In an ordinary differential equation setting multiparameter spec­
tral theory can trace its origins almost as far back as the Sturm-
Liouville theory itself. Indeed in the two-parameter case eigen­
value problems for Wr(k) = 0, r = 1, 2 were studied by D. 
Hubert [9] in which eigenfunction expansion theorems were devel­
oped and by F. Klein [13] who established an oscillation theory. 
R. D. Carmichael [6] treated /c-parameter matrix problems while 
A. J. Pell [15] considered pairs of Fredholm integral operators cou­
pled by pairs of parameters. The motivating and driving force 
underlying multiparameter spectral theory emerges in the separa­
tion of variables technique for the solution of partial differential 
equations. In the most elementary case such as the oscillations 
of a rectangular membrane with fixed boundary one is led to two 
separate Sturm-Liouville problems which are separate not only in 
regard to their independent variables but also with respect to the 
spectral parameters (i.e. separation constants) as well. For a cir­
cular membrane there is mild coupling via spectral parameters. 
The full multiparameter situation occurs in the case of the ellip­
tic membrane wherein the separated equations both contain the 
same two spectral parameters. The solutions underlying the oscil­
lation problem in this case involve the Mathieu functions. In other 
canonical problems the separation of variables technique leads to 
a study of Lamé, ellipsoidal and spheroidal functions etc. which 
together with the Mathieu functions constitute the so called higher 
special functions of mathematical physics. Their importance to 
physics and particularly quantum mechanics in the early decades 
of this century attracted considerable attention by analysts and for 
a time the mainstream of multiparameter theory was somewhat 
neglected. Most of this early work on the higher special functions 
was brought together by A. Erdélyi in volume 3 of the Bateman 
manuscript project [8]. 

The first major return to the mainstream occurs between 1953 
and 1955 when H. O. Cordes [7] developed an abstract Hubert 
space setting for the method of separation of variables and es­
tablished a spectral representation theorem for a class of two-
parameter problems. Cordes' beautiful and fundamental ideas lie 
at the heart of recent work and were successfully used by him in 
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application to a problem related to the stark effect of the hydrogen 
atom. In Cordes' work the following key assumptions are made: 

(i) Vrs € B(Hr), (the set of bounded linear 
operators on the Hubert space Hr), 1 < 

(3) r,s<2. 
(ii) Vn9Vï29-V2l9V22>0*nd\Vrl\ + Vr2 = 

Id, 1 < r < 2, where Id is the identity. 

Since one is interested in the study of the nonzero kernels of 
Wr(k), r = 1,2 a "tensor product" construction is called for. 
Such a construction had previously been developed by F. J. Murray 
and J. von Neumann [14] in their work on rings of operators and 
consequently Cordes' developed his theory in a weighted version 
of the tensor product space 

(4) H® = H{®H2. 

Perhaps because of the technical constructions and consequent 
lengthy and subtle proofs the importance of Cordes' work was 
not realised at the time. This, together with the vigorous and 
far reaching developments of classical spectral theory in the post 
war years by W. N Everitt, K. Kodaira, M. G. Krein, B. M. Lev-
itan, M. A. Naimark, E. C. Titchmarsh and others seem to have 
diverted attention once more away from the mainstream. Nev­
ertheless, new advances were being made by F. M. Arscott [1] in 
the understanding of the elusive ellipsoidal wave functions. Ar­
scott [2] also returned to particular forms of the general case and 
formulated bi-orthogonality properties and formal expansion the­
orems. 

On November 17, 1965 at the Iowa City meeting of the Ameri­
can Mathematical Society, F. V. Atkinson announced a broad pro­
gramme of research introducing numerous seminal ideas for the 
future development of multiparameter spectral theory. Atkinson's 
survey paper [3] returned the subject back with renewed vigour 
to the mainstream to which it has held steady ever since. It laid 
the foundations for most of the advances which have taken place 
over the last two decades, but more than this it drew attention 
to the many connections with polynomials in commutative opera­
tor algebras including operator bundles. It outlined a basis for a 
functional calculus, eigenvalue notions and ideals, singular matrix 
pencils, chain complexes and much more. As yet few of these wide 
ranging algebraic concepts have been taken further and the main 
thrust of development has been in regard to multiparameter linear 
operator systems and their associated spectral properties not least 
of which has been the establishment of eigenfunction expansion 
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theorems. Indeed the guiding light for this research is the obser­
vation that any spectral problem involving a single parameter will 
have nontrivial extensions involving several parameters. 

In 1972 Atkinson [4] published volume 1 of what had been 
planned (or is planned?) as the first of a two-volume work on mul­
tiparameter eigenvalue problems. This work which concentrates 
on matrices and compact operators develops, in a systematic way, 
a number of the ideas initiated in his address of 1965. 

A key idea exploited by Atkinson, but hinted at already by 
Cordes and the previous work on the higher special functions, is 
to generate from ( 1 ) a set of one-parameter spectral problems and 
to explore the spectral inter-relations between this set and the set 
{Wr(k)}r=x . This new set of problems is obtained from (1) by a 
separation of variables in reverse procedure and, under a certain 
"definiteness" condition, gives rise to the set of spectral problems 

(5) Yru = A~ Aru = Àru, \<r<k, 

defined on the tensor product H® = ® r = 1 Hr and in which we 
study the existence of simultaneous decomposable common ker­
nels. Such kernels are shown to be eigenvectors for the set 
{Wr{k)}r=x. The operators Ar, 0 < r < k are generated as cofac-
tors of the first row of the determinantal array 

\a0 a{ . . ak\ 

\Tk Vk\ " Vkk\ 
in which ar G C, 0 < r < k are arbitrary. 

Throughout the 70s a number of researchers including P. Bind­
ing, P. J. Browne, M. Faierman, A. Kallström, B. D. Sleeman and 
others carried forward the programme suggested by Atkinson to 
the case where the Tr in ( 1 ) are unbounded linear operators. Here 
one shows that a certain system of linear operator equations are 
uniquely solvable [11] which in turn shows that the operators Yr 

are pairwise commutative. If Er{Xr) is the resolution of the iden­
tity for Tr and we form 

£(A1x.--xA f c) = J?1(A1).--^(Aik), 
we have the representation 

ƒ= t E{dX)f 
J a 

where ƒ G H® and integration is taken over a = Xr=la(Tr) 
where c r ^ ) is the spectrum of Tr. In the case of pure discrete 
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spectra this amounts to a basic eigenfunction expansion theorem. 
Various ramifications and extensions of this result were brought to­
gether in the monograph [18]. Work on extending multiparameter 
eigenfunction expansion theorems in a number of directions and 
under various "definiteness" hypotheses has been a main theme of 
research in recent years with notable contributions by P. Binding, 
P. J. Browne, M. Faierman, B. P. Rynne, H. Volkmer and others 
[17, 19]. 

The representation theorems developed thus far are given in 
terms of the spectral measures of the commuting operators Tr and 
in a sense divert attention away from the more accessible spectral 
measures associated with the original system (1). 

In short, the results of Cordes cannot be deduced in their en­
tirety from the work emanating from the Atkinson programme. It 
is therefore timely that McGhee and Picard have brought atten­
tion, in modern form, to the fundamental work of Cordes. There 
is nothing essentially new in McGhee and Picard's book, but this 
is unimportant. What is valuable is their careful presentation, in 
thoughtfully worked sections, of the intricate constructions and 
detailed arguments necessary for a clear appreciation of Cordes' 
theory. It raises once more the need to generalise Cordes' results 
to more than two parameters under the most useful generalisations 
of the hypotheses (3). There is much here to attract the modern 
analyst as a rewarding research topic and holding the promise of 
a multiparameter spectral theory of wide ranging applicability. 

Cordes' theory as expounded by McGhee and Picard begins by 
inducing the system (1) under the hypotheses (3) in the tensor 
product space (4) to arrive at the induced system. 

(6) wf(A) = 0, r = l , 2 . 

Next one forms the "direct sum" space H = H® 0 H® and refor­
mulates the system (6) as the operator equation 

(7) r - F o A = 0, 

defined on H where 

"••(?,)• " - ( & & ) • A - G ) -
In addition one constructs the operators T{, T2 as in (5) and con­
siders the operator 

r = r1er2. 
In §§4-6, McGhee and Picard prove that T is essentially self-

adjoint and that T{, T2 commute, under the basic assumption: 
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There exist disjoint open intervals {/,} and {J^}, each of 
which covers the real line except for an at most countable set of 
points N ; and Nj respectively such that for each pair (u, JX) for 
all (a, /?) € lu x 1^ at least one component of 

T-Vo (l\ : HDD{T)->H 

has a bounded inverse on H® and that at least one component of 

T-Vo(P\: HDD(t)^H 

has a bounded inverse on H® . 
The main result of §7 and indeed of the whole book may be 

formulated as follows: 
Let {n5(>i5), -oo < A < oo} be the spectral family of the self-

adjoint operators Ts : H® D D{TS) -• H® > s =* 1, 2, and let 

Define n(Aj, A2) = E(kx, A2) e E(X{, A2) : H -^ H. Suppose the 
basic assumptions above hold then if K m ÇBL\Nj) x (R\Nj) one 
has _ 

rn(^)/=Forn(^)/ 
for all ƒ G / / . 

It is then necessary to be precise about what one means by the 
spectrum of the two-parameter problem. This emerges from §8 as 
the set 
{A G C | neither compact of T - V o A has a bounded inverse}. 

This set is in fact related to the support of the spectral measure 
n(-), namely the set 

{A e R2|n(A:) ^ 0 open intervals K such that AeK}. 

In order to obtain the desired spectral representation theorem 
it is further assumed that the operator T{ has a discrete spectrum 
(if this is not the case the problem remains open). By a local ro­
tation of spectral parameter space one is able (§10) to represent 
the spectral measure II(-) in terms of computable spectral mea­
sures associated with the operators defined in the original spaces 
H{ and H2. Although the resulting spectral representation theo­
rem has a rather complicated form it is widely applicable and for 
many examples simplifies considerably. 

Moving along the mainstream of multiparameter theory it is 
perhaps unwise to speculate where it will lead. Concerted efforts 
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are being made to develop the algebraic aspects as indicated in the 
Atkinson programme [12, 16] as well as "inverse" problems (5). 

It is apparent that there are numerous nonlinear problems aris­
ing in physics, engineering and biology involving several parame­
ters and calling for their analysis. Not least is a need for a mul­
tiparameter bifurcation theory and methods of solution both an­
alytical and numerical. Tentative results in this direction have 
been obtained in recent years. There is a vast ocean of nonlinear 
multiparameter theory awaiting. 
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One of the basic problems of mathematics is finding the so­
lutions of a system of equations. The easiest case is when the 
equations are linear and the general form of the set of solutions is 
well known to every mathematician. The next case one could take 
is that of polynomials. Suppose we have a collection of polynomi­
als px, p2, . . . , pm in n variables with coefficients in some field 
k . An algebraic set X is the set of common zeroes in kn of such 
a set of polynomials, X = {x e kn \ pt{x) = 0, i = 1, . . . , m) . 
Unless one restricts the problem quite a bit (say by taking the pt 's 
to be quadratic and n = 3 and k = the real numbers R ) we are 
nowhere near to completely understanding algebraic sets. Even re­
stricting the polynomials to be quadratic is no help since by adding 
new variables which are products of the old variables one can re­
duce the degrees of the polynomials to the point where they are 
quadratic. (For example y1 = x3 can be changed to the quadratic 
y =xz 9 z — x .) 

The study of algebraic sets spawned the field of algebraic geom­
etry which is very active and attracts some of the best mathemati­
cians. However, the natural development of algebraic geometry 
led to a shift in point of view from the algebraic sets themselves 


