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a useful way to get students into research. And, these nonexperts 
are my greatest concern. The intricacies of nuclear spaces or, more 
generally Kothe sequence spaces, are beyond the grasp of begin­
ners, at least any I have encountered. 

Thus, to reiterate, I see the book under review as a general 
reference book for experts and advanced students and like any 
general reference, the book has some value. The book contains a 
lot of material. Unfortunately, I felt that I had read most of it 
years before. In the words of the great philosopher Yogi Berra, 
reading this was déjà vu all over again. 
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Continuous decoupling tranformations for linear boundary value 
problems, by P. M. van Loon. Centrum voor Wiskunde en In­
formatica, CWI Tract #52, Stichting Mathematisch Centrum, 
Amsterdam, 1988, vi + 198 pp. ISBN 90-6196-353-2 

This book deserves more readers than its title is likely to at­
tract. Only specialists who have already some familiarity with the 
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subject will realize immediately that these boundary value prob­
lem concern ordinary differential equations of any order n , that 
"decoupling" means that the differential equation is transformed 
into a pair of differential equations, each of lower order than n 
and that the transformations are called continuous, because they 
deal with the differential equations themselves, not with discrete 
approximations. 

I have been trying to think of a better short descriptive title, but 
without success. The computational and theoretical difficulties this 
book comes to grips with are present in a majority of boundary 
value problems of interest in the applications. Nevertheless, an 
inviting sounding title such as "Numerical solution of boundary 
value problems for linear ordinary differential equations" would 
be too comprehensive and therefore misleading. 

To describe here these difficulties in simple, though admittedly 
very vague, terms it suffices to concentrate on homogeneous differ­
ential equations written in the standard form 

where A(t) is an n x n real matrix and x an «-dimensional vec­
tor depending on t. The solutions are «-dimensional vector func­
tions of t. If one knows a fundamental system of solution vectors, 
i.e., n solutions that are linearly independent at one point—and, 
hence, everywhere—then all solutions are linear combinations of 
those n vectors. Now, it turns out that the vectors of a fundamen­
tal system differ very much in size. Even if they are normalized 
so as to be, say, all of length one at one particular point some will 
change with t much faster—in length as well as in direction— 
than others. Therefore, which of those vectors are numerically 
important in a linear combination may differ radically from point 
to point. This phenomenon is likely to ruin the accuracy of com­
putational schemes for any but very simple boundary value prob­
lems, unless the procedure is sophisticated enough to cope with 
this problem. 

Parallel with the rapid growth of power of the available com­
puting equipment in the past thirty years, there has been a great 
deepening and broadening of the mathematical analyses pertinent 
to the question just described. In 1958, J. L. Massera and J. J. 
Schâffer introduced the useful concept of "dichotomy" of a fun­
damental system of solutions, and a few years later W. A. Coppel 
made a thorough study of its implications. Roughly speaking, a 
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dichotomy is present if the set of all solutions can be split into 
two subsets, one of which contains only solutions that grow with 
t in the interval considered, while those in the other subset shrink 
with growing t. There are two types of problems in which this 
dichotomy is most pronounced. One occurs when t is very large 
(or close to a singularity). Then, under reasonable smoothness 
assumptions, the classical asymptotic theory implies that the di­
chotomy is "exponential", i.e., that there is a fundamental system 
of n vectors some of which grow as fast as exponential functions, 
as t —• oo ; the "dominant" solutions, while the other, the "dom­
inated" solutions shrink or, at worst, grow not faster than some 
power of t. 

The second type of problems in which dichotomy is a useful con­
cept consists of differential equations in which some coefficients 
are "very large." Nowadays, one often meets the term "stiff' dif­
ferential equations in the study of such problems. The origin of 
this terminology is, presumably, the simple differential equation 
that describes movements caused by a stiff spring. Often the im­
precise words "very large" can be replaced with a mathematically 
more satisfactory description by introducing a large parameter into 
the differential equation. The task is then to study the solutions as 
that parameter grows to infinity. In this way one enters the well-
developed subject of the asymptotic theory of differential equa­
tions as a parameter tends to infinity. It contains, in particular, 
the topic called "singular perturbations." 

The "decoupling" referred to in the title of the book consists of a 
linear transformation x = T(t)y of the unknown vector function 
x in the given differential equation 

*L = A{t)x + f(t), 

for which the coefficient matrix A of the resulting new differential 
equation 

%; = A(t)y + f{t) 

has the special, block-diagonal, form 

•Âu{t) Ân(t) 
A{t) = 

0 A2M)\ 

If An has k < n rows and columns, the task of solving the 
differential equation has, thus, been decomposed into solving first a 
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system of n -k equations and then one of order k. The boundary 
conditions mentioned in the title of the book are of the form 

B°x(0) + BXx{\) = b 

with constant n x n matrices B°, Bx, and a vector b. (The choice 
of the interval as [0, 1] is for convenience only.) 

If the solution space of the corresponding homogeneous system 
of differential equations has a dichotomy, it would be very conve­
nient if the transformation matrix T decoupled the system into 
one for the dominated solutions and one for the dominating ones. 
However, k is not known in advance, nor does one know which of 
the infinitely many decoupling transformations T achieve such a 
separation. Thus, it seems that the search for a "good" decoupling 
is a case of begging the question. 

On the other hand, even the incomplete insight obtainable by a 
theoretical analysis is a great help in the setting up of an effective 
computational scheme. One aim of the book is to give a connected 
account of this material, including careful proofs wherever the 
properties to be used are mathematical theorems and supplying 
heuristic or numerical justifications wherever no complete error 
analysis is available. 

The reader is expected to be familiar with the elementary theory 
of matrices. Many interesting properties beyond that material are 
derived in the first two chapters of the book. It is also assumed 
that the reader knows already some of the standard computational 
techniques such as the Runge-Kutta method. The presentation is 
clear but so concise that most prospective readers will have to put 
in some effort to fill in all the gaps. 

The great power of modern computing equipment is taken full 
advantage of. For instance, the requirement that the transfor­
mation with matrix T(t) produce a block-diagonal new coeffi­
cient matrix represents a system of quadratic differential equa­
tions. That system possesses a large family of solutions. The size 
of the system can be somewhat reduced by additional restrictions, 
but even that system is often rather large. It goes by the name of 
Riccati equation in gneralization of the well-known simple scalar 
case. 

After the original system has thus been block-diagonalized, the 
numerical solution of the boundary value problem usually requires 
a "multiple shooting" procedure to avoid accumulation of errors. 
This term describes a subdivision of the interval at whose end-
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points the boundary conditions are prescribed into a set of subin-
tervals. The intermediary boundary values are connected by lin­
ear conditions. The total number of parameters that have to be 
simultaneously determined in this way may be quite large, even if 
strategies such as the not too clearly defined "invariant imbedding" 
are applied. 

The author describes carefully the detailed steps of the compu­
tations that represent the "bottom line" of his investigations. Their 
complexity exceeds what existing computing equipment would 
have been capable of coping with, only a few decades ago. A num­
ber of illustrative examples is included to verify the feasibility of 
the author's methods. 

An extensive literature on the subject of this book is listed and 
quoted. The bibliography has sixty-three entries, most of them 
less than fifteen years old. In addition, a number of the results 
appears to be due to the author himself. The strongest influence 
is the work of R. M. M. Mattheij. 

The longest chapter discusses stiff problems, particularly those 
of singular perturbation type. The author shows that his tech­
niques can produce numerically satisfactory answers for boundary 
value problems whose solutions are nearly discontinuous in bound­
ary layers or at certain interior points. He hints that even well-
studied difficult problems of fluid dynamics, such as the boundary 
value problems for the Orr-Sommerfeld equations that govern the 
onset of turbulence in flows with large Reynolds number, can be 
handled in his way, but no applications to such important practical 
problems are included in the book. 

Singular perturbation problems have long been explored by an­
alytical methods based on asymptotic expansions or else, on the 
theory of differential inequalities. I am wondering if those tech­
niques could not be combined to advantage with the approach of 
this book. 

For an analogous situation such a combination is, indeed, pre­
sented in the last chapter. There, the author develops a method for 
the numerical solution of boundary value problems with analytic 
coefficients, when one endpoint of the interval considered is a sin­
gularity of the first kind. The well-known analytic theory for such 
singular points is a useful ingredient in the proposed procedure. 
The dichotomy of the solution space is here apparent from the out­
set. Most of the content of this chapter is a condensed version of 
an earlier report by the author. ("Reducing a singular linear two-
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point boundary value problem to a regular one by means of Riccati 
transformations," EUT-report 83-WSK-04, Eindhoven, 1983.) 
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Derivatives, nuclei and dimensions on the frame of torsion theo­
ries, by Jonathan S. Golan and Harold Simmons. Pitman Re­
search Notes in Mathematics Series no. 188, Longman Scientific 
& Technical, Harlow, U.K. (co-published in the United States 
with John Wiley & Sons Inc., New York), 1988, 120 pp., $44.95. 
ISBN 0-582-03448-5 

This monograph is remarkable not so much for the new results 
which it contains, as for the fusion of two hitherto separate tradi­
tions which it represents: the algebraic tradition of studying non-
commutative rings via their module categories (and more particu­
larly via localizations of the latter), and the lattice-theoretic study 
of frames and their nuclei, whose main inputs have come from 
logic and category theory (particularly topos theory). 

In one sense, it comes as no surprise that these two traditions 
should have coalesced. As Borceux and Kelly [1] have shown, the 
localizations of any well-behaved category have a natural tendency 
to form a frame in their canonical ordering (incidentally, it seems 
odd that [1] does not appear among the references of the book 
under review). Also, in the representation theory of commutative 
rings the utility of frames is well understood (see [6, Chapter 5] 
for a survey; the key point is that in the commutative case one 
can pass directly from a ring to its frame of radical ideals and 
the other frames associated with it, without having to go by way 
of the module category). However, in the noncommutative case 
there has until recently been a noticeable lack of communication 
between ring theory and frame theory: the subjects have been ad­
vanced by disjoint sets of people (with the notable exception of 
J. Lambek; however, his work on rings [7] predates his interest 
in categorical logic, and does not use techniques from the latter), 
and have developed distinct traditions of terminology and nota­
tion. (Although the present book makes a start on bridging the 


