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§1. INTRODUCTION 

During the past decades the mathematical theory of nonlinear 
three-dimensional elasticity has undergone a considerable renewed 
interest, reflected for instance by the books of Marsden and Hughes 
[17], Ciarlet [8], and the book reviewed here. 

The existence results available at the present time fall in two 
categories: 

In one approach (described in §§2 and 5) the problem is posed 
as a system of three quasilinear partial differential equations of the 
second order, together with specific boundary conditions (cf. (13)), 
and one tries to obtain "bear existence results based on the im­
plicit function theorem; this approach, which was initiated by Stop-
pelli [18], is the central theme of the book under review. 

In another approach (described in §§3 and 4), the problem is 
posed as a minimization problem for the associated energy (cf. 
(20)), and one tries to adapt the paraphernalia of the calculus of 
variations (infimizing sequences, weak convergence, weak lower 
semi-continuity, etc.) to this problem, which is "highly noncon-
vex"; this approach is the basis of a famous existence result of 
Ball [3]. 

All these results apply to "static" equilibria, i.e. to problems that 
are time-independent. While substantial progress has thus been 
made in the study of statics, the mathematical analysis of time-
dependent three-dimensional elasticity still meets with inextricable 
difficulties. The proofs of the available existence results "for large 
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times," even though they apply to only one space variable, are 
already exceedingly delicate. 

§2. THREE-DIMENSIONAL ELASTICITY 

Detailed expositions of the mathematical modeling of three-
dimensional elasticity are found in Truesdell and Noll [19], Wang 
and Truesdell [23], Gurtin [14], Marsden and Hughes [17, Chap­
ters 1-5], Ciarlet [8, Chapters 1-5]. 

The central problem in nonlinear, three-dimensional, static elas­
ticity consists in finding the equilibrium position of an elastic body 
when it is subjected to applied forces. This body occupies a ref­
erence configuration Q in the absence of forces, where Q, is a 
domain in R3, i.e. a bounded, connected, open subset of R3 with 
a Lipschitz-continuous boundary T ; in particular then, a unit nor­
mal vector n = (nt) exists almost everywhere along T. 

When subjected to applied forces, the body occupies a deformed 
configuration ç>(Q)9 where the mapping <p: Q -» R , which is 
called a deformation, must be orientation-preserving in the set £1 
and injective on the set Q, in order to be physically acceptable 
(the reason a deformation need not be injective on Q is that self-
contact must be allowed). 

Let M3 denote the set of all real matrices of order 3 and let 

M3
 = { F E M 3 ; d e t F > 0 } . 

Then the orientation-preserving character of a deformation im­
poses that its deformation gradient Vç>(x), defined by 

(dxq>x d2cpx d3yx\ d 

V<p = \dxç>2 d2<p2 d3<p2 , where dt = -^-, 
\dx<p3 d2<p3 d3<p3J 

be in the set M3 for all X G Q . 

A body occupying a deformed configuration ç{£l), and sub­
jected to applied body forces in its interior and to applied surface 
forces on a portion <p{Tx) of its boundary, where F{ is a subset 
of T, is in static equilibrium if the fundamental stress principle of 
Euler and Cauchy is satisfied. This axiom implies the celebrated 
Cauchy theorem, according to which: 

(i) There exists a tensor field T: Q —• M3 that satisfies the 
equilibrium equations over the reference configuration: 

( -divT(*) =?(*,?(*)) , xeQ, 
\T(x)n(x) = g(x,Vp(x))9 xeTv 
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or, componentwise, 

f -EUdjTijW = fi(x>v(x»> x e f t , l < / < 3 , 

l EU TiM)nM) = 8i(x> v*>(*))> xerl9l<i<3. 
(ii) The tensor T(x) = {Ttj{x)), which is called the first Piola-

Kirchhoff stress tensor at the point x e Q, is the Piola transform 

(3) T(JC) = (det V^(x))T^(^(jc))V^(jc)"r 

of the Cauchy stress tensor T?(p(x)) at the point p(x) ; since the 
Cauchy stress tensor is symmetric, one thus has, by (3), 

(4) T{x)Vç{x)T e S3 for all x e Q, 

where S3 = { A e M 3 ; A = A r } . 
The mappings f : Q x R3 —• R3 and g: Q x M3 —• R3 respec­

tively measure the density of the applied body force per unit volume, 
and the density of the applied surface force per unit area, in the ref­
erence configuration. For instance, a pressure load corresponds to 
a density g of the form 

(5) g(x, Vp(x) = -n(detVç(x))Vç(x)~ n(x), xeT{, 

where n is a real constant, called the pressure; the gravity field 
corresponds to a density f of the form 

(6) f(*, p(x)) = -gp(x)e3, xeQ, 

where g is the gravitational constant, p(x) is the mass density, 
and e3 is the "third" basis vector, assumed to be "vertical" and 
"upward oriented." The density in (6) is that of a "dead load": 
an applied body or surface force is a dead load if its density is 
independent of the particular deformation ç> considered. Note in 
passing that actual applied forces can seldom be modeled as dead 
loads (except the gravity field, or a pressure load with n = 0! ). 

The equations of equilibrium ( 1 ) must clearly be complemented 
by equations that specify the nature of the constituting material 
that is considered; the undetermination of equations (1) is also 
clear from a mathematical standpoint, since there are three equa­
tions in (2) and nine unknowns, the three components of the de­
formation and the six independent components of the tensor T 
(there are three equations in relation (4)). 

A material is elastic if, at each point p(x) of the deformed con­
figuration, the Cauchy stress tensor T9{(p{x)) is solely a function 
of x and of the deformation gradient Vq>(x). Equivalently, by 
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(3), a material is elastic if, at each point x e Q, the first Piola-
Kirchhoff stress tensor is expressed in terms of x and Vq>(x) 
through a constitutive equation of the form 

T(x) = t(x, Vtp(x)), or equivalently 
( ? ) Tu(x) = ftj{x, V<p(x)), 1 < /, ; < 3, 

where the response function 

(8) T = (f.j): ( x , F ) 6 f l x M ^ T ( x , F ) G M3 

characterizes the elastic material. Note that, by (4), the response 
function must also satisfy 

(9) f{x, F)F r G S3 for all (JC, F) e Q x M 3 . 

One must then take into account the axiom of material frame-
indifference, a general principle in physics that, loosely speaking, 
asserts that any observable quantity with an "intrinsic" character 
(here, the Cauchy stress vector) must be independent of the par­
ticular basis in which it is computed. As expected, the effect of 
this axiom, also known as the axiom of invariance under a change 
of observer, or the axiom of objectivity, is to reduce the class of 
mappings of the form (8), and which satisfy (9), that may be used 
in a constitutive equation (7) of an elastic material. 

More specifically, let O3 denote the set of all rotations in R3, 
i.e., orthogonal matrices Q of order 3 with detQ = + 1 . Then an 
elastic material is frame-indifferent if and only if, at each x eCl, 

(10) f(x, QF) = QT(JC , F) for all Q e O3 , F e M 3 . 

As shown by Fosdick and Serrin [13], a noteworthy consequence 
of relation ( 10) is that the response function T cannot be linear with 
respect to its argument F e M3 if the reference configuration is a 
natural state, i.e. if the stress tensor vanishes when q> - id (this 
is equivalent to saying that T(x, I) = 0 for all x e Q). Note 
in passing that this observation definitely rules out linear partial 
differential equations (as in (13) below) as a possible model of 
elasticity! 

Let us assume that the unknown deformation ç> satisfies a 
boundary condition of place, of the form 

(11) ç(x) = ç>0(x), xeT0, 

where ç>0 : T0 —• R3 is a given mapping, on the remaining portion 
T0 = T - Tj of the boundary of Q. We recall (cf. (1)) that on 
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Tj , <p satisfies a boundary condition of traction, of the form 

(12) T(x)n(x) = g(x, V ^ W ) , xeTv 

Note that the boundary conditions of place and traction far from 
exhaust all the situations occurring in practice, where in particular 
unilateral boundary conditions are quite common. 

Assembling the various notions found so far, we are thus seek-
ing a deformation <p : Q —• R that solves the following boundary 
value problem of three-dimensional elasticity (we recall that a de­
formation must be orientation-preserving in Q and injective on 
Q): 

{ -divî(jc, Vç(x))=l(x, ç(x))9 jcefl, 

9(x) =ç>0(x), XGT0, 

f(x,Vç(x))n(x) =g(x,Vç(x)), x GTV 

This problem is called a pure displacement problem if rx = 0 , a 
displacement-traction problem if area T0 > 0 and area T{ > 0, 
and a pure traction problem if T0 = 0 . 

Assuming appropriate differentiability, we can write the equa­
tions in Q found in (13) as 

3 dT.. d2 

~ ^ —Hx,V(p{x))—£Mx) 
(14) 

j=\ oxj 

In the terminology of partial differential equations, such second-
order equations, whose higher-order terms are nonlinear functions 
of Vç>(x), are labeled quasilinear, by contrast with semilinear 
equations, where the terms containing the partial derivatives of 
the highest order are linear. 

Quasilinear partial differential equations are considerably 
harder to analyze than semilinear ones; this is one reason why 
so many difficulties are encountered in the mathematical analysis 
of three-dimensional elasticity. 

§3. HYPERPLASTIC MATERIALS 

An elastic material is hyperelastic if there exists a stored energy 
function W : Q x M̂ _ —• R such that 

(15) T(x ,F) = ^ ( x , F ) f o r a l l x e Q , F E M ^ , 
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or, componentwise, 

f / 7(x,F) = | ^ ( x , F ) for all x GO, F e M 3 , 1 < / , ; < 3. 

Applied body and surface forces are conservative if there exist po­
tentials F : Q x R 3 ^ R a n d G: T{ x R3 x M3 -+ R such that, for 
any smooth enough vector fields 0 : Q —• R that satisfy 0 = 0 
on T0 , 

f l(x, <p(x)) • 0(JC) dx = F\<p)6 , 
(16) J* 

with F{yf) = / F (x , ^(x))rfx, 
in 

with G(yr) = ƒ G(JC , y/{x), Vy/{x)) dx, 

where • denotes the Euclidean inner product in R3, and F'(<p) 
and G'(Ç) denote the Fréchet derivatives at q> of the function-
als F and G. For instance, dead loads, or a pressure load, are 
conservative. 

If the material is hyperelastic and if the applied forces are con­
servative, solving the boundary value problem (13) is formally 
equivalent to finding the stationary points of the total energy I, 
defined by 

(18) I(¥)= f W(x,V¥(x))dx-{F(¥) + G(W)}, 

when i// varies in a set of admissible deformations of the form 

0 = { ^ : Q — > R ; ^ i s injective on Q, 

de tV^ > 0 in Q, y/ = q>0 on r o } . 

In other words, the boundary value problem (13) forms the 
Euler-Lagrange equations associated with the total energy; in par­
ticular, any minimizer ç of the functional I over the set O , i.e., 
any <p e O that satisfies 

(20) 1(c) = i n f / ( r ) , 

is a solution of this boundary value problem, provided it is smooth 
enough (note that a minimizer is a particular stationary point). 
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The axiom of material frame-indifference then implies that, at 
each point X G Q , the stored energy function W{x, •) is only a 
function of the right Cauchy-Green strain tensor {Vq> (x)} V<p(x). 
In other words, there exists a mapping W{x, •) such that 

(21) W{x, F) = W(x, F rF) for all F e M*. 

The behavior of the stored energy function for large strains, which 
mathematically reflects the idea that "infinite stress must accom­
pany extreme strains" [2], plays a crucial role in the existence the­
ory: It takes the form of a behavior as det F —• 0+ : 

(22) W{x9 F) -+ +oo as det F -+ 0 + , 

and of a coerciveness inequality: There exist constants a > 0, 
p > 0, q > 0, r > 0, and p such that 

(23) W(x,F) > a{\\F\f + ||CofFf + (detF)'} + fi 

for all F G M3
+, 

where CofF = (detF)F~ r is the cofactor matrix of the matrix 
F . That the matrix F , the matrix CofF, and the scalar detF, 
appear in the right-hand side of the coerciveness inequality (23) 
reflects the facts that the matrix Vq> (through the right Cauchy-
Green strain tensor V(pTV<p ), the matrix CofVç?, and the scalar 
det Vp , respectively govern the changes of lengths, surfaces, and 
volumes, associated with a deformation (p . 

Note that the stored energy function W: (x, F) e £1 x M̂ _ —• R 
cannot be convex with respect to the variable F e M+ : such a 
convexity would contradict both the behavior (22) as detF —• 0+ 

[1] and the axiom of material frame-indifference [12]. 
The lack of convexity of the stored energy function, together 

with the lack of convexity of the set O of admissible deforma­
tion (cf. (19)), stood for a long while as major difficulties in the 
mathematical analysis of three-dimensional hyperelasticity. 

§4. EXISTENCE THEORY BASED 

ON THE MINIMIZATION OF THE ENERGY 

The question of existence of solutions to the nonlinear boundary 
value problems of three-dimensional elasticity can be approached 
in two ways: 

One approach consists in applying the implicit function theorem 
to the nonlinear boundary value problem (13). The existence re-
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suits obtained in this fashion constitute the core of the book under 
review; they are discussed in the next section. 

Another approach consists in seeking the minimizers of the to­
tal energy I(y/) of (18) when yt varies in a set O of admissible 
deformations of the form (19). This approach was given a consid­
erable momentum by J. Ball, who showed in a landmark paper [3] 
how to extend the usual methods of the calculus of variations to 
this problem, in spite of its "lack of convexity." 

More specifically, his method consists in considering an infimiz-
ing sequence (<p ) of the total energy (18) over a set O of the 
form 

(24) O = {yt e W1 ,/7(Q) ; Cof V ^ e L*(Q), det Vyf e if (O), 

y/ = (pQ on T0, det V f̂ > 0 a.e. in Q}, 

where the exponents p, q, r, which are precisely those appear­
ing in the coerciveness inequality (23), are sufficiently large (more 
precisely: p > 2, q > p/(p - 1), r > 1). By (23), the sequence 
(<p , CofVç? , detVç> ) is thus bounded in a reflexive Banach 
space; whence there exists a subsequence {(p , CofVç> , detVç? ) 
that weakly converges to an element (ç9H9ô) e W l p(f2) x 
V(Q) x Lr(Q). Then one shows that, remarkably, one has pre­
cisely H = Cof V<p and ô = det V<p ; this is a special case of the 
general phenomenon of compensated compactness introduced in 
1978, and then extensively studied, by F. Murat and L. Tartar. 

The behavior (22) of the stored energy function as det F —> 0+ 

then implies that detVp > 0 a.e. in Q, and thus that the weak 
limit of the infimizing sequence belongs to the set O of (24). 

To obviate the lack of convexity of the stored energy function, 
J. Ball has introduced the fundamental notion of polyconvexity: A 
stored energy function W: QxM+ —• R ispolyconvexif, for each 
x EQ, there exists a convex function 

W(JC, •): M3 x M3x]0, +oo[— R 

such that 

(25) W(x, F) = W(JC , F , Cof F , det F) for all F G M J . 

Polyconvexity is clearly a much weaker requirement than convex-
ity (for instance, the function F € M+ -> det F is polyconvex, but 
not convex!). Contrary to convexity, such an assumption does not 
conflict with any physical requirement and indeed, it is satisfied by 
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realistic models, such as Ogden 's, or Mooney-Rivlin, elastic mate­
rials. Note that actual stored energy functions are naturally given 
as functions of F, CofF, and detF, since, as already observed, 
Vq>, CofVp , and det V<p , respectively "measure" the changes of 
lengths, surfaces, and volumes associated with a deformation q> . 

Another crucial contribution of J. Ball is that the assumption of 
polyconvexity implies the sequential weak lower semi-continuity 
of the total energy I, viz., 

I(ç) < liminf/(ç? ), 
/—»-oo 

from which it follows that p G $ is a minimizer of the total en­
ergy. J. Ball obtains in this fashion existence theorems in the space 
W 'p(£l), p > 2 , for pure displacement, pure traction (with an 
additional condition in the set O in this case), and displacement-
traction problems. 

The existence results of J. Ball have been subsequently extended 
so as to take into account unilateral boundary conditions of place of 
the form " <p(Q,) c B," where B is a closed subset of R3 [10], and 
the injectivity condition "ç is injective in Q " [4, 11]. J. Ball's 
theory, as well as these extensions, are also exposed in detail in 
Ciarlet [8, Chapter 7]. 

A major open problem in J. Ball's approach consists in stating 
sufficient conditions that would imply additional regularity of the 
minimizers. Because such conditions are lacking, it is not known 
whether, in some specific cases, such a minimizer could be a solu­
tion, even in a weak sense, of the associated Euler-Lagrange equa­
tions, i.e., of the boundary value problem of three-dimensional 
elasticity (13). 

§5. EXISTENCE THEORY BASED 

ON THE IMPLICIT FUNCTION THEOREM 

The idea of using the implicit function theorem goes back to 
Stoppelli [18] and van Buren [5]. The first complete existence 
results have been independently obtained by Valent [20], Marsden 
and Hughes [16, pp. 204 ff.], and Ciarlet and Destuynder [9]. T. 
Valent has in particular pursued in depth this approach in various 
directions, which are described at length in the book under review. 

Given a deformation <p of the reference configuration £1, let 
u denote the associated displacement, which is the vector field 
u.-H-^R 3 defined by 

(p = idö + u, 
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where id^ denotes in general the identity mapping of a set A . 
Consider the particular pure displacement problem (we have 

Vq> = I + Vu) : 

ƒ - d i v î ( x , I + VU(JC)) = t(x), x e Q 

\ U(JC) = 0 , xeT, 

which thus corresponds to the particular boundary condition of 
place ç = id r , and assume that the reference configuration is a 
natural state, i.e., the stress tensor T vanishes if <p = id. Then 
clearly problem (26) possesses the particular solution u = 0 cor­
responding to f = 0 (for simplicity, we assume that the density f 
is that of a dead load). 

Under mild smoothness assumptions on the response function 
T, it can be shown that the operator of nonlinear elasticity A: u —• 
A(u), defined by 

(27) A(U)(JC) = -divT(x, I + VU(JC)) , x e Q, 

maps the Sobolev space W2,p(£2) into the space Lp(£2) for each 
p > 3 , and further, it is Fréchet-differentiable between these same 
spaces. These results, which are due to Valent [20], rely essen­
tially on the fact that the Sobolev space is an algebra 
for p > 3 . 

Hence one way of solving the pure displacement problem (26) 
consists in finding 

(28) u€V p (Q) = {vEW 2 ' p (Q);v = 0 o n r } 5 p > 3 , 

such that 

(29) A(u) = f. 

In order to use the implicit function theorem in a neighborhood 
of the origin, we must verify that the Fréchet derivative A'(0) is 
an isomorphism between the spaces VP(Q) and I / (Q) . 

But the equation A'(0)u = f is precisely a boundary value prob­
lem of linearized elasticity. If we make the additional assumptions 
that the (frame-indifferent) material is homogeneous (its response 
function is independent of x e Q) and isotropic ("at any point 
in the reference configuration, its response is the same in all direc­
tions"), the equation A'(0)u = f takes the familiar form 

-div{A(tre(u))I + 2//e(u)} = f 

(30) { in Q, with e(u) = ^(Vu + Vu r ) , 

u = 0 on T, 
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where A and fi are two constants, called the Lamé constants of 
the material. Experimental evidence shows that, for actual elastic 
materials, one has 

(31) A > 0 , /i>0. 

It is well known that, under the assumptions (31) (actually the 
inequalities ju > 0 and X > -\ii would suffice) the linear problem 
(30) possess a unique weak solution in the space HQ(Q) (this relies 
crucially on Kom 's inequality). It can be further shown that, if the 
boundary T is smooth enough, the continuous, injective, operator 
A'(0) : \P{ÇÏ) —• 1/(Q) is also surjective, i.e. that a regularity result 
of the form 

Af(0)uelf(&)=>ueYp(Cl) 

holds. Combining this regularity result with the implicit func­
tion theorem, we obtain a "bear existence theorem in the space 
W2 'P(Q), p > 3 : For each number p > 3 , there exist a neighbor­
hood Fp of 0 in LP(Q) and a neighborhood Up of 0 in VP(Q) 
such that, for each fe¥p, the pure displacement problem (30) has 
exactly one solution u G Vp . 

Through a possible reduction of the neighborhood ¥p , one can 
further show that the associated mapping <p = id+u is a deforma­
tion, i.e. that it is orientation-preserving and injective on Q (the 
injectivity, which relies on properties of the topological degree, 
may be proved as in Ciarlet [8, Theorem 5.5-2]). 

The successful application of the implicit function theorem to 
existence theory thus relies on two keystones: 

(i) the differentiability of the operator A (cf. (27)) of nonlinear 
elasticity between the spaces W2,/?(Q) and 1/(0) ; 

(ii) the surjectivity of the derivative A'(0), or equivalently, the 
regularity property that the weak solution of the linearized problem 
(this solution is known to exist "at least" in the space H^Q) by 
the variational theory) lies in the space W2'P(Q) if the right-hand 
side f is in l / ( Q ) . 

The extensions of this approach are thus limited to situations 
where both properties still hold. For instance, analogous exis­
tence results hold for pure traction problems if the boundary T 
is smooth enough (specific difficulties arise however in this case, 
which thus requires special care; see in particular Chillingworth, 
Marsden & Wan [6, 7], Valent [21], Le Dret [15]). 
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It is the lack of W2,p(Q)-regularity of the solutions of linearized 
displacement-traction problems (except in the very special case 
where r o n Tx = 0 ) that prevents the application of the implicit 
function theorem to genuine displacement-traction problems. To 
overcome this lack of regularity, one could conceivably try to apply 
the implicit function theorem in Sobolev spaces "of lower order" 
such that H ^ Q ) , where the solution of the linearized problem is 
known to lie anyway. 

This idea cannot be pursued any further, however, even in the 
case of pure displacement problems (hence let alone in the case of 
displacement-traction problems!), in view of the following strik­
ing result of nondifferentiability, due to Valent and Zampieri [22]: 
Assume that the operator A is a homomorphism between a neigh­
borhood of 0 in wJ , p(Q) and a neighborhood of 0 in W" 1 / 7 (Q) 
(the dual of W Q ' P ( Q ) ) for some p > 1. Then the response T is 
necessarily affine! In other words, any nonlinear operator is ruled 
out by this approach, and we know that T cannot be linear when 
the reference configuration is a natural state (cf. §2). 

This is an instance of the nondifferentiability of Nemytsky op­
erators, also called substitution, or composition, operators, which 
are studied at length by T. Valent in his book. 

§6. THE BOOK OF T. VALENT 

The book under review is an up-to-date, complete, and self-
contained, exposition of the "local" existence theory in three-
dimensional elasticity based on the implicit function theorem. 

After a brief survey of three-dimensional elasticity, the author 
gives a detailed treatment of the differentiability or nondifferen­
tiability, and analyticity, of nonlinear operators acting between 
Sobolev spaces W m / 7 (Q) , or between Schauder spaces Cm ' (Q). 
He also gives a detailed treatment of the existence and regularity 
of solutions of problems in linearized elasticity. As we have seen 
(cf. §5), these questions play a crucial rôle in the application of 
the implicit function theorem to existence theory in elasticity. 

Local existence theorems, as well as uniqueness, analytic depen­
dence on the right-hand sides, topological properties of the sets of 
admissible deformations, are then proved in a variety of situations 
that include pure displacement problems and pure traction prob­
lems, in particular for dead loads and pressure loads. All these 
make a wholeheartedly recommended supplementary reading to 
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Chapter 6 of Ciarlet [8], where this approach (including a proof of 
convergence of an incremental method) is also exposed in detail, 
but only for the pure displacement problem. 

The treatment is mathematically rigorous and thorough. The 
book is well, and carefully, written (however, many statements of 
theorems, corollaries, or lemmas could have been shortened!); it 
is complete, with historical notes, an index of notations, and an 
index. Finally, the typesetting and general outlook are in the best 
Springer tradition. 

I strongly recommend this book to anyone interested by the 
modern mathematical theory of elasticity. 
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Heat kernels and spectral theory, by E. B. Davies. Cambridge Uni­
versity Press, Cambridge, 1989, 197 pp., $49.50. ISBN 0-521-
36136-2 

For the usual Laplacian A in Euclidean space R" and its spec­
tral theory, there is a tremendous amount of information avail­
able, largely because of a number of explicit formulas that are 
known. For example, the heat semigroup etA (the operator that 
solves the heat equation du/dt = Au for t > 0 from the ini­
tial value u(x, 0), given certain weak growth conditions) is a 

convolution operator with kernel (4nt)~n^2e~^ ^4t. From the 


