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SUMMARY 

This volume grew out of lectures given by Higman at Oxford 
in 1983 and 1984 as recorded and amended by Scott. It is not 
a comprehensive work on e.c. groups but rather contains an am
ple selection of topics written at an easily accessible graduate level. 
Both algebraic and model-theoretic aspects of e.c. groups are high
lighted. Thus, Chapter 2 gives two very diferent group-theoretic 
proofs that the normalizer of a finite characteristically simple sub
group of an e.c. group G is a maximal subgroup of G, as well as 
related results, and has considrable technical interest. [For exten
sions of one of these methods, see the reviewer's "A.c. groups: Ex
tensions, maximal subgroups, and automorphisms," Trans. Amer. 
Math Soc. 290, (1985), 457-481.] This book contains all the re
sults of Hickin and Macintyre's "A.c. groups: Embeddings and 
centralizers" (in Word Problems II, North-Holland, 1980) with the 
exception of the spectrum problem in power col. After some pre
liminaries, Chapters 5 and 6 develop some algebraic applications 
of the Higman embedding theorem and its generalized version 
(which is deduced in the text). In particular the embedding of 
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wreath products into ex. groups is discussed. The highlights of 
these sections are 

(1) a slick recursion-theoretic proof that the class of all recur
sively presented groups forms a minimal skeleton for an 
e.c. group, and 

(2) the very nice theorem (due to Higman) that if A ^ 1 
then there is no universal finitely presented group over A 
(which has the corollary that no e.c. group is embedded in 
a finitely generated subgroup of itself). 

Chapter 7 develops some forcing techniques (in a game-theoretic 
manner) used to construct countable e.c. groups. These are em
ployed to 

(1) produce 2W countable e.c. groups with pairwise disjoint 
skeletons (i.e. except for subgroups with solvable word 
problems!) and 

(2) produce an e.c. group M and a finitely generated, recur
sively presented subgroup G c M such that for all H ^ 1, 
the free product G * H is not embeddable in M. 

The first of these results can be proved by the simple forcing 
argument used in Lyndon and Schupp, Combinatorial Group The
ory, Prentice Hall, 1977, pp. 232-233. [Ziegler's classification (M. 
Ziegler, "Algebraisch abgeschlossene gruppen" in Word Problems 
II, North-Holland, 1980) is beyond the scope of these chapters, 
although Ziegler-reducibility is discussed and the result describ
ing those groups forced into an e.c. group by the inclusion of a 
fixed group is given.] The final chapter deals with the first-order 
theory of e.c. groups, the highlight being the theorem that the em-
beddability of any given arithmetically related finitely generated 
group in an e.c. group is controlled by a first-order sentence in 
the e.c. group. Some results on generic groups are also given and 
several difficult exercises occur in the text. 

DISCUSSION 

The subject of existentially closed groups currently occupies a 
special place in the model theory and logic of algebraic systems. 
This is due to a number of convergent factors, not the least of 
which is that this subject performs a type of wedding between re
cursion theory (the foundation of mathematical logic) on the one 
hand and group theory (the foundation of the analysis of math
ematical structure) on the other. In another sense, it and related 
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topics in other systems provide a testing ground for the classifica-
tory concepts of model theory. E.c. groups provide an exemplary 
case in which powerful techniques are available to explore the de
tails and potentials of logical complexity in a class of systems well 
known for their intrinsic beauty. 

An existentially closed structure E for a class of algebraic sys
tems S is a sort of "universal structure for Z-relations" in the 
sense that £ E I and every finite set of equalities and inequali
ties (that is, negations of equalities) of terms (or more generally 
of atomic formulas and their negations), containing finitely many 
variables as well as constants from E, which can be solved in some 
Z-superstructure of E can also be solved in E. The related con
cept of an algebraically closed Z-structure is obtained by allowing 
only equalities (or atomic formulas) in the finite sets of consistent 
conditions which must be solvable in E. As for fields (in which 
ax. and e.c. objects coincide) every nontrivial a.c. group is e.c.1; 
but for the class of locally finite /7-groups there are two nontrivial 
countable a.c. structures, one of which is the unique countable 
e.c. structure [Leinen and Phillips, A.c. groups in locally finite 
group classes, Lecture Notes in Math 1281, Group Theory Proc. 
Brixen/Bressanone, 1986, 85-102]. 

An e.c. structure is a type of saturated structure, (These play a 
crucial role in the study of nonstandard models, model-extensions, 
and other aspects of model theory). In simple (and favorable) 
terms an e.c. structure for Z is a Z-structure which has all finite 
consistent Z-conditions built into itself and so is a sort of uni
verse in which all Z-algebra can be consistently performed. This 
is a weak type of saturation, which generally requires certain in
finite sets of consistent conditions (describing element types) to 
be reflected. In extremely favorable circumstances (which include 
all locally finite classes) the e.c. Z-structures coincide with the 
stronger notion of basically saturated structures B e Z defined by 
an amalgamation condition: if C C o are finitely generated Z-
structures with C ç B and D can be amalgamated with B over 
C in some Z-structure, then there is an embedding of D into B 
over C . (This type of structure has been incisively studied in [B. 
Maier, On countable locally described structures, Ann. Pure Appl. 
Logic 35 (1987), 205-246].) 

^his is because if a and b ^ 1 are elements of any group G and x, y are 
variables then the equation b = x~laxy~lay is consistent over G if a ^ 1 . 
Thus equalities can be used to force inequalities. 
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Countable e.c. structures exist in almost all classes of any inter
est by an easy direct limit argument, whereas there are no countable 
basically saturated groups since there are 2*° finitely generated 
groups. (This same fact implies that 2**° countable e.c. groups 
exist.) Every e.c. group is simple. A countable e.c. group E is 
determined uniquely by its finitely generated subgroups and every 
isomorphism between two of these is induced by conjugation in 
E . Despite this homogeneity there is an incredible variety of e.c. 
groups. The powerful technique needed to explore the world of an 
e.c. group is the embedding theorem of Graham Higman which 
states that every group with a recursively enumerable presentation 
G — {xn(n > \)\R) (R recursively enumerable) is contained in a 
finitely presented group H = (h{, . . . , hk\S) (S finite) so that the 
{xn} equal a recursive set of words on {hx, . . . , hk) . This leads 
to the embedding of parts of recursion theory into group theory 
as well as the recursion-theoretic character of e.c. groups. From 
this and a simple group-theoretic construction it follows that an 
e.c. group G has elements satisfying any recursively enumerable, 
consistent (i.e. solvable in some larger group) set of implication 

P\ ~^P2A'"APk o r -*/>i ** ^Pi) A *'' A (~"Pk) w here the p. 
are equations among terms containing constants from a finitely 
generated subgroup of G and variables {xx, . . . , xn, . . . } . This 
implies, for example, that every group with a solvable word prob
lem is a subgroup of every e.c. group since we can effectively 
enumerate all relations as well as all nonrelations in such a group. 
It also implies that an e.c. group must be somewhat complicated: 
no e.c. group can possess a recursively enumerable presentation 
(on an infinite set of generators).2 

The simplest e.c. group is the homogeneous group which is a 
direct limit of finitely presented groups and contains every such 
group. This group is arithmetically definable (at a very low level 
of this heirarchy) and so has a strong constructive character—the 
ineffectiveness involved in it is, in practical terms, no worse than 
our inability to perform computations among algebraic numbers 
(even though such computations are theoretically possible). Hig-
man's theorem (and its relativization) allows us to show that many 
group theoretic constructions can be performed within any e.c. 

If so, then, because it is simple, it would have a solvable word problem and 
this would contradict the lemma below. 
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group. For example, if A and B are finitely generated subgroups 
of the e.c. group G and A]B is any semidirect product of A by 
B, then A]B can be embedded into G—we need finitely many 
equations to say how (a copy of) B acts on (a copy of) A and 
the infinite set of implications ab = I —> a = I Ab = I (a e A, 
b G B). Even the restricted wreath product AwrB can be em
bedded in G provided B has a solvable word problem. However, 
it is not necessary that the free product A * B embed in G even 
if \A\ — 2 and B is recursively presented, and it is not possible 
to perform strong analgamations in all e.c. groups. This points-
up the enormous difficulty of classifying the possible collections 
of finitely generated groups which can comprise an e.c. group—a 
question which was successfully answered by Martin Ziegler ten 
years ago [op. cit.] by giving a high-powered recursion-theoretic 
classification of them. Despite this classification much work has 
gone into studying special types of e.c. groups such as the generic 
groups3 which arise from the use of forcing to construct countable 
e.c. groups, as well as the first-order theories of e.c. groups and 
the power of first-order sentences to determine the structure of an 
e.c. group (which is very considerable). Work has also been done 
(especially by the reviewer) in studying the global properties of e.c. 
groups—maximal subgroups, centralizers, automorphisms, exten
sions, permutation representations, etc. [K. Hickin, op. cit. and 
Some applications of tree-limits to groups, Trans. Amer. Math. 
Soc. 305, 797-839 (1988)].4 The book under review presents a 
fair sampling of these endeavors and contains much of interest 
both to group theorists and logicians. 

As an illustration of the nice fit of recursion theory with the 
group theory of e.c. groups we will give a short proof (after the 
method of Lyndon-Schupp, op. cit.) of the following—which is 

The concept of a generic structure, a logically technical one, can be nicely 
illustrated by its algebraic analog for basically saturated structures B : B is basic-
generic o> whenever the amalgam D U B of the previous definition is L-inconsis-
tent (i.e. it cannot be embedded in a larger Z-structure) then D\J BQ is also X-
inconsistent for some finitely generated B0 C B . 

A good example of a global result is the following which the reviewer [op. cit.] 
was able to obtain using Ziegler's "homogeneous limit" [M. Ziegler and S. Shelah, 
A.c. groups of large cardinality, J. Symbolic Logic 44 (1979), 130-140]: Suppose 
AC. B are e.c. groups and we can recursively enumerate generators of A as words 
involving finitely many elements of B . Let A be any e.c. group having the same 
finitely generated subgroups as A . Then A Ç B , where B is an e.c. group having 
the same finitely generated subgroups as B . 
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the main result in Chapter 7 of the book under review: 

Theorem. There exist 2**° nonisomorphic countable e.c. groups 
no two of which have isomorphic finitely generated subgroups with 
unsolvable word problems. 

The proof consists of a recursion-theoretic lemma and then a 
simple "forcing" construction. 

Lemma. Every e.c. group has a finitely generated subgroup with an 
unsolvable word problem. 

The proof of this lemma uses recursively inseparable sets of nat
ural numbers—a consequence of elementary recursion theory [H. 
Rogers, Theory of Recursive Functions and Effective Computabil-
ity, p. 94]—and Higman's embedding theorem.5 

Proof of the Lemma. Let I, / be recursively inseparable sets of 
natural numbers. (This means that I, J are recursively enu
merable: I D J = 0 ; and I ç X, X n J = 0 implies X 
is not recursive—these can be obtained as I = {n\(pn(n) = 0} 
and / = {n\(pn{n) = 1} where <pn is the nth partial recur
sive function under some Gödel numbering.) Now consider the 
recursively enumerable presentation for a group P with gener
ators {yk, tk\k > 1} U {z} and relations {yk = l\k G 1} U {z = 
ÇXyktk\k G / } . Using Higman's theorem we embed P in a group 
H - {q{, . . . , Qn\R) {R finite). If E is an e.c. group we choose 
w{, . . . , wn e E so that the map qx —• w{, . . . , qn -> wn de
fines a homomorphism <p from 7/ into E (that is, the relations 
R are satisfied by Wj, . . . , wn) and such that tp(z) ^ 1. Thus 
I c X = {/|^0>;) = 1} and X n J = 0 because (p(yk) = 1 and 
k e J implies (via the relations of P ç H) that tp(z) = 1. Hence 
X is not recursive, proving that (p{H) ç E has an unsolvable 
word problem. 

THE CONSTRUCTION 

Let X = {xn\n > 1} be variables and F be the free group 
on X. We will construct presentations (X\R) of e.c. groups 
G = F/R by specifying increasing finite sets of relations Rn ç F 
so that i? = \J{Rn\n > 1}. At the same time we will specify 

5 With a bit more work the construction used in this proof can be used to obtain 
a finitely presented group G such that no nontrivial image of G has a solvable 
word problem. 
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increasing finite sets Inç F whose elements will remain nontrivial 
in G. The requirements needed to guarantee that G is an ex. 
group are (i) I{ = {x{} will be a nontrivial element of G, and, 
letting W = {Wk\k > 1} be all finite sets of words involving 
the {xn\n > 1} as well as new variables T = {tn\n > 1} (and 
their inverses), (ii) For each W e W there is a step n of our 
construction such that (a) if the relations W are consistent with 
Rn (that is, (X\Rn) is a subgroup of (XuT\Rnö W)) we choose 
variables from X not occurring in Rn and put R x = Rn U W1, 
where W' results from substituting the new Z-variables for all T-
variables occurring in W ; and (b) if W is inconsistent with Rn 

then we put 7W+1 = In U {z} where z e F is nontrivial in {X\Rn) 
but trivial in (X\J T\Rn U FT). Thus if W e W is consistent with 
G = {X\R) then (by (b)) W was also consistent with (X\Rn) (the 
step W was considred) and so solutions for the relations W exist 
in G by (a). Thus G is ax. and nontrivial and hence ex. also. 

Proof of the Theorem, To construct two ce. groups G = 
(X\R) and G = (X\R) so that no finitely generated subgroups 
of them with unsolvable word problems are isomorphic, let Y — 
(y{, . . . , yn) and Z = (zx, . . . , zn) be subgroups of F . Let Yk = 

{yx, . . . , >>„) Ç / ^ / < and Z , = (zj , . . . , zn) ç F/Xf . If w G Y 
let w' e Z be the result of making the substitutions y. —• zy 

(1 < J < n). If there exists w e Y such that w e R% but 

w £ Rk then we can define Rk+l = i?^ U {^} and Ik+l = 

IkU {w } which guarantees (*) : Y/R and Z/R are noniso-
morphic under the map y. —• z . . We can proceed similarly if 

there exists w G Y such that w £ Rk but w G i?fc . So we 

can assume that for all w e Y, w e Rk o w e Rk , that is, 
Yk and Zk are isomorphic under the map y•. —• z . . Now put 

5 = { t u G 7 | i ? ^ F n 4 ^ 0 } . If 5 ^ 1 " - i ? f ,say ^ G 7 - i ? f , 
Rkw

F nlk = 0 , then we can put Rk+l = Rk U {tu} and 7 ^ = 
IkU{w } which also implies (*). If, however, S = Y - Rk , then 

F F 

we must have Y f)Rk =YnR since any further relation would 
kill an element of Ik c I ; thus r / i?f = Y/RF and this group 
has a solvable word problem since every Rkw

F (w e Y) can be 
recursively enumerated and checked to see if some member of Ik 

belongs to it—in which case w =£ 1. So by considering each se-
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quence pair (y{, . . . , yn) and (z{, ... , zn) (n > 1) at some step 
k of the construction we guarantee that no subgroup of G with 
an unsolvable word problem is isomorphic to a subgroup of G. It 
is also clear that binary branchings in the construction of the rela
tion sets can be created to obtain 2*° sets R(a) (a < 2*°) such 
that any two R(a) and R(fi) (a ^ /?) have the incomparability 
property of R and R above. 
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