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which make the book most welcome. The book is written in a 
topological mode, it is true, but it is accessible and suitable for 
a wider readership, being clear and careful in style, emphasizing 
the search for the "right" notion and "right" proof. The special­
ist on the other hand may still find interesting homotopy theory 
(fibrewise) which is new to him, in the last part of the book. 
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One of the most important and distinctive features usually as­
sociated with the class of analytic functions is what is commonly 
referred to as the unique continuation property. Put in its simplest 
form it says: if f(z) is defined and analytic on an open set Q in 
the complex plane and if either 

(1) f(z) = 0 on a set with a limit point in £2, or 
(2) f{n\z0) = 0, n = 0, 1, 2, . . . , at some Z 0 G Q , 

then f(z) = 0 on Q. In short, an analytic function is completely 
determined by its behavior on a rather small portion of its domain 
of definition. Koosis's book, The logarithmic integral, (LI), is in 
large part concerned with extensions and applications of this basic 
fact. 

By 1892—at the age of twenty-one—Émile Borel had become 
convinced that it must be possible to extend the uniqueness prop­
erty to much larger, more general, nonanalytic classes of functions 
defined, for example, on sets without interior points. To some, 
however, it seemed highly unlikely that such a program could be 
carried out in any meaningful way and Poincaré had even con­
structed certain examples to strengthen the negative point of view. 
Nevertheless, Borel persisted in his conviction and at his thesis 
defense of 1894—at which Poincaré was the rapporteur—he 
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continued to press his case, not yet being able to exhibit a suitable 
extension of the classical concept of an analytic function while 
retaining the distinctive feature of unique continuation. 

In the years that followed, Borel sought to give more precise 
expression to his ideas and he eventually created the theory of 
monogenic functions as outlined in his book [5], published some 
twenty-five years later. A function ƒ defined on an arbitrary sub­
set E of the complex plane is monogenic at a point x0e E if it 
is differentiate at xQ in the sense that 

x—>XQ , x(EE X — Xr\ 

exists through points of E ; the set of functions monogenic at 
every point of E is denoted M(E). What Borel discovered is 
this: There are sets E which have no interior, but are nevertheless 
sufficiently massive so that if ƒ G M (E), then ƒ e C°°(E) in the 
restricted sense and if either 

( 1 ' ) ƒ = 0 on a relatively open subset of E, or 
(2' ) f{n)(x0) = 0, « = 0 , 1 , 2 , . . . , at some x0 e E, 

then ƒ = 0 on E. That is, the class of monogenic functions on 
E enjoys the uniqueness property of the analytic functions. Al­
though Borel evidently considered these results to be of consider­
able importance, his work in this area never received wide recog­
nition. It did, however, contribute indirectly to the creation and 
development of the theory of quasianalytic classes by A. Denjoy, 
T. Carleman, S. N. Bernstein, A. Beurling, and others. 

A second and quite different area of study which also led in 
the same direction has its roots in physics. This has to do with 
the work of Holmgren and others on the possible uniqueness of 
solutions to the heat equation (cf., for example, [12, 13]). The 
problem was this: Is the distribution of heat u = u(x, t) at time 
t in a thin metal rod lying along the x-axis completely determined 
by its initial state u(x, 0) ? More specifically, does the initial value 
problem 

ut - uxx = 0, -oo < x < oo, t > 0 

u{x, 0) = f(x) 

have a unique solution? As early as 1908, Holmgren had turned 
his attention to this and similar questions and he found that if 
u(x, t) is any solution to the heat equation, then it is necessarily 
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(1) <AMn(2n)\ 

analytic in x, C°° in t, and when restricted to a bounded region 
of the x*-plane, 

dnu\ 
dtn\ 

for n = 0, 1, 2, ... , and suitable constants A and M. If (2n)\ 
could be replaced by «!,then u would also be analytic in t and its 
future would be completely determined by its past. Unfortunately, 
the inequalities (1) are sharp and we cannot, in general, expect 
a unique solution to the initial value problem as stated (cf., for 
example, Tychonoff [16] and also [14]). 

Commenting on the situation as it existed in 1912, and on the 
work of Holmgren in particular, Hadamard [10] posed the fol­
lowing problem: What conditions on a sequence of positive real 
numbers An, n = 0 , 1 , 2 , . . . , are sufficient to ensure that if 
feC°°[a,b] and 

(2) \f{n\t)\<MnAn, « = 0 , 1 , 2 , . . . 

uniformly on [a, b], then ƒ is uniquely determined by its value 
and the values of its derivatives at a single point? The prob­
lem stood for nearly a decade until it fell in grand fashion at 
the hands of Denjoy and Carleman, at which time the theory of 
quasianalytic classes was born (cf. [7, 8]). One consequence of 
their work is this: If, in addition to the requirements outlined 
above, E ~ i V 7 " = °° a n d / " V ) = 0, w = 0, 1, 2, ... , for 
some c e (a, b), then ƒ = 0. If ƒ happens to be analytic, the 
inequalities (2) are automatically satisfied with An = n\ and so 
X^ti ^n^n - c^nL\ n = °° • Thus, a genuine extension of the 
classical theory had now been achieved. An excellent description 
of the early results and subsequent development can be found in 
Chapter IV of The logarithmic intégral. 

In practice, however, one is sometimes forced to deal with the 
uniqueness question for functions defined on a set E having no 
underlying smoothness, where we cannot speak about the deriva­
tives /(M), A = 1, 2, ... , even in the sense of Borel, and where 
we cannot make use of inequalities like (2). To illustrate the point 
let us suppose that Q is a bounded simply connected domain in 
the complex plane, let dA denote two-dimensional Lebesgue mea­
sure, and let w(z) > 0 be a bounded continuous function defined 
on £1. Consider the two spaces of functions: 

2 1 

(a) A (ÇI, wdA), the closure of the polynomials in L (wdA). 
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(b) 1^(12, wdA), the set of functions in L2(wdA) which are 
analytic in Q. 

It is easily seen that A2 ç L2
a and so we can ask if equality occurs. 

By duality this is equivalent to the following question: If m G 
L2(Q, wdA) and if the integral 

r, . f mw\ mW%dAc 
z) C 

vanishes identically in Q^ , the unbounded complementary com­
ponent of Q, must ƒ = 0 a.e. with respect to harmonic measure 
on 9Q? For purposes of this discussion the reader should envi­
sion Q as being obtained from a Jordan domain by introducing 
cuts or slits in the form of simple (but nonsmooth) arcs extending 
from the interior to the boundary. Our task, then, is to prove that 
ƒ = 0 on the cuts from the knowledge that ƒ = 0 on dQœ . For 
this it is convenient to transfer the problem to the unit disk D 
by means of conformai mapping. In this way we obtain a corre­
sponding function F on D and, moreover, F has radial limits 
F(0) a.e. -d6 on dD. Here dd is the usual arc length measure. 
Under suitable conditions (arising principally from restrictions on 
w ) it can be shown that F(6) is nearly analytic in the sense that it 
has a rapidly decreasing sequence of negative Fourier coefficients. 
If we could prove that F(6) = 0 a.e. -d6 it would follow that 
ƒ = 0 a.e. with respect to harmonic measure on dQ. Thus, we 
can, in principle, avoid the difficulties associated with a general 
boundary and work in a more familiar setting. What emerges is 
this: For a weight w = w(g) depending only on Green's function 
g, the conclusion F(0) = 0 a.e., and hence A2 = L2

a, is valid 
whenever y log w(y) is monotonie and 

J_ 
[w(yY 

(cf., for example, [6]). In particular, w(z) -> 0 rather quickly 
as z —• d£ï. The expression (3) occurs often in connection with 
quasianalytic classes and can be viewed as one manifestation of 
The logarithmic integral, after which Koosis's book takes its name. 

Let us now turn the situation around and consider a function 
^(0) ~ Z)!°oo anein6 defined and continuous or square summable 
on dD. If an = 0 for n = 1, 2, ... , then F admits an analytic 
extension to the interior of D and therefore F(6) = 0 if any of 
the following occur: 

(a) F = 0 on a subarc of dD ; 

(3) ƒ loglog —^dy = +oo 
Jo 



252 BOOK REVIEWS 

(b) F = 0 on a set of positive measure on dD ; 
(c) tf\ag\F(e)\de = -<x>. 

However, each of these assertions remains valid under the much 
weaker assumption that \a_n\ —> 0 rapidly as n -» +oo. If, for 

example, \a_n\ < e~^n, p > 0, then F can again be continued 

analytically off dD, this time to the annulus e~^ < \z\ < 1, and 
the situation is essentially unchanged. The problem of determining 
the exact rate of decay required on the negative Fourier coefficients 
in order to ensure that the uniqueness property of the analytic 
functions is retained can be viewed as a natural extension of the 
question posed by Hadamard [10] in 1912 and was first taken up 
by Cartwright, Levinson, and Beurling in the late 1930s (cf., for 
example, [2, 3, 15]). Here is what resulted from their combined 
efforts: if 

(i) \a_n\<e~k{n\ « = 1 , 2 , . . . 

(ü) E~ i (^ ) /* 2 ) = +°°> 
where k(x) î +oo as x î +oo, then F(9) = 0 whenever (a) or 
(b) is satisfied. Actually, slightly more is required of k for part 
(b). In any case, if k(n) = n/logn, both assertions are correct 
even though the corresponding F(6) may now admit no analytic 
extension off dD. 

As it stands, however, the Beurling-Levinson-Cartwright result 
does not suffice for the application described above. We cannot be 
sure in the approximation problem that F(6) vanishes at more 
than a single point, as could conceivably happen if ô Q ^ has 
harmonic measure zero. But, it can be shown that if the weight 
w(z) — 0 fast enough as z ^ 9 Q , then fân\og\F{6)\dd = -oo 
in all cases and, moreover, conditions (i) and (ii) on the negative 
Fourier coefficients are fulfilled. Thus, we are forced to consider 
the uniqueness question in the more general context. 

The first step is to extend F(6) from dD to the entire open 
disk D in a suitable fashion. This is accomplished with the aid 
of the Legendre transform h(y) = supx>0(/c(x) - yx), y > 0, 
and a corresponding weight function w(z) = w(\z\) = e~~ ( o g l / , z , ) 

defined on D. Because w(z) -> 0 very rapidly as z -> 3D, there 
is an extension, still denoted F, with the property that 

< const .w(z) 
« < z > (4) 

almost everywhere in D. This is a consequence of a theorem of 
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Dyn' kin (cf., LI, pages 338-343) and, roughly speaking, is equiv­
alent to the existence of a function p e L°°(D) such that 

( Z )=SÖ" z +«hirw dA< 
has the given boundary values F(6). Here dA refers to two-
dimensional Lebesgue measure and, since dF/dz = -pw , the re­
quired estimate (4) follows. Of course, the extended F is not itself 
analytic and we are back, more or less, in the situation described 
earlier in connection with the weighted approximation problem. 

Now let E = {z e D: \F(z)\ < w(z)}. Without loss of gen­
erality we may assume that E is the union of countably many 
disjoint smoothly bounded Jordan regions, only finitely many of 
which meet any compact subset of D. Setting U = D\E we 
may also assume that dU 2 <9D, since otherwise F(9) = 0 on 
some subarc and therefore F(6) = 0 by the original Cartwright-
Levinson theorem. There are two possibilities: Either 

(A) dE is thick near some point À0 e dD, or 
(B) dE is thin at every point of dD. 

It is a remarkable fact that, in either case, F(0) = 0 provided 
J0

27r log \F(0)\dO - - oo . This is a theorem of A. L. Vol ' berg and 
it represents the most significant advance in the theory of quasian-
alytic classes since the seminal work of Cartwright, Levinson and 
Beurling carried out more than forty years ago (cf., [19, 20]). 

There are two key ideas. One goes back to Bernstein [1], was 
greatly transformed and developed by Beurling [2] and is this: Al­
though the extended F is not analytic, it can be approximated 
very rapidly by a sequence of functions, each of which is analytic 
in some annular region abutting dD. For each e < 1 we have 
simply to define 

where De = {z: \z\ < 1 - e} . Clearly, Fe is analytic for 1 - s < 
\z\ < 1 and, moreover, 

(iii) \F(z)-Fe(z)\<ce-h{e), 
(iv) | F , ( z ) | < * . 

The constants c and K are independent of e and, for conve­
nience, we have replaced /z(log 1/(1 - e)) by h(e). Inequalities 
such as these are central to the entire theory and they give precise 
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expression to the general principle that functions which are rapidly 
approximable by analytic functions retain the unique continuation 
property. 

In case (A) it is best to transform the problem to the real line 
R by means of the mapping x(z) = -f ' logz. The correspond­
ing functions, again denoted F and F£, are defined and peri­
odic on R. To prove that F = 0 on R we choose an interval 
[A, B] containing a full period of F and we study the Fourier 
transform F(z) = ƒƒ F(x)elzxdx . Because F is entire and sat­
isfies an inequality of the form \F(x + iy)\ < Kea*y*, the function 
log |F(z) | - ay is subharmonic and bounded above in the upper 
half-plane y > 0. The latter is therefore majorized by its Poisson 
integral and, since under the present assumptions 

f°° - dt 
(5) J log|F(0|^ = -oo, 

it can be inferred that F = 0 and consequently F = 0 on R. The 
integral in (5) plays a fundamental role in Koosis's book and its 
convergence or divergence is related to the fact that for the func­
tion k and its Legendre transform h the integrals fQ\ogh(y)dy 
and ff°(k(x)/x2)dx converge or diverge simultaneously (LI, p. 
333). Here, the second is equal to +oo by virtue of property (ii). 
Earlier, in the approximation problem it was the first integral that 
controlled the situation. 

In case (B), F is replaced by a new function 

, x f \ dF dAr 
<D(z) = F(z) exp > ' c~ 

\ nJu F(Qd?(C-z) 

and it is easily checked that 

(v) O is analytic in U. 
(vi) cx\F{z)\ < |<D(z)| < c2\F(z)\ with cl9c2>0. 

The idea of regularizing a function F in this way was first em­
ployed by Theordorescu in 1931, was rediscovered by Bers in 1951 
and rediscovered again by Vol' berg in 1982. It is now commonly 
referred to as the Bers similarity principle (cf., [18]). Because we 
are in case (B), harmonic measure for U is boundedly equivalent 
to dd on dU n dD and it follows by a standard argument that 
O = 0 in U and, hence, F = 0 a.e. - dd on dD. 

A complete description of these and a host of similar results 
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can be found in The logarithmic integral The book contains, for 
example, a thorough discussion of the classical Bernstein problem 
for weighted polynomial approximation on the real line and its 
generalization to closed sets having infinite extent in both direc­
tions. Considerable space is given, therefore, to the corresponding 
results of Mergeljan, Akhiezer, Pollard, de Branges, Benedicks, and 
the author, where necessary and sufficient conditions for approxi­
mation are expressed in terms of the integral which is the subject 
of the book. Also included is a chapter on the moment problem 
together with results of Carleman and M. Riesz which involve in­
tegrals of the same form. 

Nevertheless, it is my conviction that the material chosen for 
presentation in this review most nearly conveys the nature and 
scope of Koosis's book. If there is a single dominant theme, it 
can best be expressed in terms of the uncertainty principle which, 
loosely stated, is this: A function F e l) (R) and its Fourier trans­
form F cannot be simultaneously small on a large set unless F 
and F both vanish identically. More than 150 pages representing 
a quarter of the text are devoted, at least nominally, to making 
this statement precise in various situations. Here, in Chapter VII, 
the main uniqueness theorems and their consequences are estab­
lished and the uncertainty principle plays a key role, particularly 
in connection with the work of Cartwright, Levinson, and Beurl-
ing. It is ironic, therefore, that the principle itself and the Fourier 
transform as a tool are suddenly abandoned when the more recent 
contributions of Vol ' berg are taken up. This is due, undoubt­
edly, to the relative novelty of the results in question at the time 
that The logarithmic integral was written. Thus, on this topic the 
author follows rather closely Vol ' berg's original argument as out­
lined in [19]. Use of the Fourier transform, however, allows a 
more direct approach to be taken and sharp forms of the basic 
uniqueness theorems are easily obtained (cf., [6] and LI, the Ad­
dendum). In this way the true relationship between the work of 
Beurling and Vol' berg is also brought into sharper focus. Roughly 
speaking, Beurling deals with case (A) described above and, build­
ing on this, Vol'berg deals with case (B). 

The logarithmic integral is a well-written book and it will en­
able the reader to enter an area where there has been an explosion 
of new results. Perhaps the most striking development to date 
is the use of nearly or asymptotically holomorphic functions by 
Il'yashenko and Vol ' berg in connection with an old conjecture of 
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Poincaré, just recently settled. In its original form Poincaré's con­
jecture was this: If p(x9y) and q(x,y) are polynomials, then 
there can be at most finitely many limit cycles associated with 
the first-order system of equations x = p(x, y), y = q(x, y). It 
turns out, however, that the conjecture is still valid even when p, q 
are only known to belong to certain quasianalytic classes, and the 
methods described in Koosis's book are applicable here. Addi­
tional applications can be found in connection with the existence 
of asymptotic values for functions in the MacLane class (cf., [11]) 
and possibly to the study of finely holomorphic functions (cf., [9]). 

The book is excellent and I personally look forward to the ap­
pearance of volume 2 which is now in press and which contains 
a wealth of material on harmonic measure, capacity, extremal 
length, gap theorems, multiplier theorems and, in particular, the 
work of Beurling and Malliavin. 
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The classic study of linear partial differential equations centered 
around the three basic types of equations: elliptic, parabolic, and 
hyperbolic. From physical considerations for the potential, heat, 
and wave equations, one was able to determine suitable boundary 
value problems for each category of equation or system of equa­
tions. 

However, when an equation or system did not fit into one of 
the three types, little was known or done concerning the deter­
mination of proper boundary value problems. In the 1930s, J. 
Hadamard, O. Sjostrand, and others began the study of equations 
of composite type in two dimensions. These are equations that 
have characteristics of both elliptic and hyperbolic (or parabolic) 
type. For example, if one considers a first-order system of three 
or more equations, then the system will be of composite type if at 
least one of the roots of the characteristic equation is real and at 


