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may lead to a complete solution of Bannai's problem to determine 
all éf-polynomial DRGs of diameter > 2. 

There is no doubt that the book under review will be an essen
tial tool for the specialists in discrete mathematics. But also the 
general mathematician may take advantage of the ideas expressed 
in the book. To illustrate this we recall that in the very first line 
of this review we spoke of regularity, and not of symmetry of 
the platonic solids. Indeed, the book is devoted to graphs having 
well-defined regularity properties. In the group case regularity ac
tually can be interpreted as symmetry. This is important for two 
reasons. Group theory provides many examples of nice graphs; 
and algebraic graph theory sometimes provides interesting results 
about groups. 
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Diophantine approximation begins with the following theorem 
of Dirichlet: Let a be a real number and Q > 1 an integer, 
then there exist integers p and q such that 1 < q < Q and 
\&q - p\<{Q+l)~x. From this basic result there springs a large 
number of generalizations, extensions and variations. Suppose, for 
example, that \\x\\ denotes the distance from the real number x to 
the nearest integer. If a is irrational, then it follows immediately 
that there are infinitely many positive integers q which satisfy 

(1) Q\\*q\\ < 1. 

Naturally one may ask if the bound in (1) can be sharpened and 
it is a result of Hurwitz [5] (and implicit in an earlier paper of 
Markoff [8]) that it can be. In fact if a is irrational, there are 
infinitely many positive integers q such that 

(2) q\\*q\\ < 5"1/2 
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and here the constant 5" ' is best possible. More precisely, if a 
is equivalent under the natural action of PGL(2, Z) to a root of 
x2+x-l - 0, then liminf^^ q\\aq\\ = 5~l/ . Suppose, however, 
that a is irrational but a is not equivalent under the action of 
PGL(2, Z) to a root of x2+x - 1 = 0. As was shown by Markoff, 
for such a there are infinitely many positive integers q which 
satisfy q\\aq\\ < 8~l/2 and now the constant 8~1/2 is best possible. 
For if a is equivalent under the action of PGL(2, Z) to a root of 
x2 + 2x - 1 = 0, then liminf^^ q\\aq\\ = 8~1/2. It turns out that 
results of this type can be continued indefinitely. For there exists 
a sequence of irreducible quadratic polynomials fx(x), f2(x), ... 
in Z[x] and a corresponding sequence cx > c2 > c3 > ... of 
positive constants such that if a is irrational but not equivalent 
to a root of fx, f 2 , . . . , or fN_x, then 

(3) q\\aq\\ < cN 

holds for infinitely many integers q > 1. The first few polynomials 
are fx{x) = x 2 - fx - l , f2(x) = x2+2.x-l , f3(x) = 5x2+ll .x-5, 
f4(x) = 13x2+29x-13, and the first few constants are cx = 5~1/2, 
c2 = 8~1/2, c3 = 5(221)"1/2, c4= 13(1517)^1/2. Here cN is such 
that if a is equivalent to a root of fN, then liminf^^ q\\aq\\ = 
c^ and therefore the bound (3) is best possible. 

This line of investigation can be more easily pursued by intro
ducing the function a -• /u(a), which is defined for irrational real 
a by fi(a) = liminf^^tfHatfH. Usually the set of values taken 
on by ju(a) is called the Lagrange spectrum. However, in the book 
under review and therefore in the present review, the authors find 
it more convenient to define the Lagrange spectrum to be the set 

L = {M^r1 : OL e R\Q and 0 < //(a)}. 

In view of our previous remarks the first few small values in L 
are (cx)~

l = 51/2, (c2)~
l = 81/2, ... and these converge to the 

smallest limit point of L which is 3. The set L is a rather com
plicated closed subset of (0, oo) whose elements determine the 
best constants in Diophantine inequalities involving the integer 
multiples of irrational numbers. Not surprisingly L can also be 
defined using continued fractions. 

There is another closed subset M of positive real numbers, 
called the Markoff spectrum, which is closely related to L. The 
set M occurs naturally from considerations in the geometry of 
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numbers. Let ƒ(x, y) = ax1 + bxy + cy2 be an indefinite binary 
quadratic form with real coefficients and discriminant d(f) = è -
4ac > 0. We define the minimum m( ƒ) of the form by 

m(f) = mf{\f(x,y)\:x6Z,yeZ9 and (x, y) # (0, 0)}. 

The set of values taken on by the expression m(f)(d(f))"lf2 is 
commonly used as the definition of the Markoff spectrum. In the 
book under review it is more convenient and consistent with the 
authors' definition of the Lagrange spectrum to use the reciprocals 
of these numbers. Thus the Markoff spectrum is defined by 

M = {(d(f)) 2(m(f))~l : ƒ is an indefinite binary quadratic 
form with real coefficients and 0 < m(/)}. 

The relationship between L and M can be seen by defining 
each in terms of certain continued fractions. We recall that if 
{b0, bx, b2, . . .} is a sequence of integers with bn > 1 for n > 1, 
then 

= lim èn + 

* ! + • 

is the simple continued fraction expansion for the real number 0 
having {b0, bx, b2,...} as its sequence of partial quotients. Now 
let A denote the set of doubly infinite sequences A = {... , a_2, 
tf_i > % > a{, a2,... ) of positive integers. If A e A and n e Z 
we define 

so that Xn(A) is always a positive real number. For each A e A 
we set 

L(A) = limsup{Aw(^) : n € Z}, 
M(^) = sup{Art(^):«eZ}. 

Then it was shown by Perron [12] that L and M occur as 

(4) L = {L(^ ) :^€A and L(A) <oo}, 
(5) M = {M(A):AeA and M {A) < oo}. 
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It is this approach to the sets L and M which the authors em
ploy throughout most of their book to give a reasonably complete 
account of current knowledge of these spectra. For example, it 
follows easily from (4) and (5) that L c M and that Ln (0, 3) 
and M n (0, 3) are equal. In 1947 M. Hall [4] proved that every 
real number can be written in the form 

a + [0,bl9b2, . . . ] + [0 ,c 1 ? c 2 ? . . . ] , 

where a is an integer and the partial quotients {bx, b2, . . . } and 
{cx , c2, . . . } are positive integers less than or equal to 4. From 
this a simple argument shows that L, and therefore M, contains 
an infinite closed interval [y, oo). In 1975, in a deep and difficult 
paper, G. A. Freiman [3] found the smallest value of y for which 
this is so. At present Freiman's result requires heroic calculations 
so lengthy that they have understandably not been included in the 
present volume. The precise result is that [y, oo) ç L ç M, with 

253, 589, 820 + (283, 748)v/462 
7 491,993,569 

= 4.52782956- •• , 

but there exists a nonempty open interval (S, y) which contains 
no point of M. 

While our understanding of L and M is not complete, it is 
quite substantial. Virtually all results can be obtained from pa
tient, sometimes painstaking, analysis with continued fractions. 
Happily, the authors carefully and expertly clarify the occasion
ally muddled history of research on the spectra. The subject mat
ter here is admittedly rather specialized and at times one feels 
somewhat cut off from other mathematical theories. A refreshing 
exception occurs in the last chapter of the book where results on 
L and M are obtained using the modular group T = SL(2, Z). 
Thus Hurwitz's theorem (2) is established directly from knowledge 
of the familiar fundamental domain for the action of T on the 
upper half-plane H = {z e C : Im(z) > 0} . This approach was 
first found by L. R. Ford [1,2]. 

There are two famous problems which are not considered in 
the volume being reviewed but which deserve to be mentioned. 
Suppose that ax and a2 are both irrational real numbers. Of 
course it may happen that /i(ax) > 0 and ju(a2) > 0. On the other 
hand Littlewood has conjectured that liminf^_^00^||a1^||||a2^|| = 
0, and this remains a difficult open question. Next let ƒ be a real 
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nondegenerate indefinite quadratic form in N > 3 variables and 
set 

m(/) = inf{|/(Jc)|:JcGZiV and x^Ö}. 

If ƒ is a multiple of a form with integer coefficients, then plainly 
m(f) = 0 precisely when ƒ represents zero nontrivially. As is well 
known, such an ƒ will always represent zero nontrivially when 
N > 5. If ƒ is not a multiple of a form with integer coefficients, 
then it was a long outstanding conjecture of Oppenheim [9, 10] 
that m(ƒ) = 0. This was recently settled by G. A. Margulis [6, 7] 
in the slightly stronger form (also conjectured by Oppenheim [11]) 
that for every e > 0 there exists x eZN with 0 < \f(x)\ < e. 

For those unfamiliar with previous work on the spectra we have 
already noted that the book under review uses a definition of L 
and M which is the reciprocals of the numbers more commonly 
used to define these sets. Attention should also be called to a typo
graphical error on page 1 (and repeated on page 85) which occurs 
in the definition of the function a —• ju(a). In summary, the re
viewer found this volume to be interesting and well researched. It 
should become a standard reference for results on the spectra. 
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The book targeted by this review is truly a landmark, project
ing barrelledness as the major force which disciplines the general 
theory of locally convex topological vector spaces (lctvs); it is the 
definitive study of strong and weak barrelledness structure the
ory, with a novel choice of applications (Chapters 10-12); it is a 
unique assimilation of half a century's scholarship, comprehensive, 
coherent, current, with a marvelous collection of open problems 
(Chapter 13). In his fanciful flight over an area he has roosted 
in for two decades, the reviewer finds the book the monument 
which most powerfully stimulates and facilitates fresh contribu
tions (see below), contributions particularly urgent in view of the 
fertile open problems and certain creatively correctable mistakes 
(a modest price for such timeliness). A clearer bird's-eye view of 
strong barrelledness unfolds (see Figures 1-4). 

The recent demise of the beloved patriarch, Prof. Dr. G. Köthe, 
recalls the historically grand German tradition in topological vec
tor spaces (tvs). Now Spain has emerged a leader with the advent 
of Prof. M. Valdivia and his prolific followers, including the au
thors P. Pérez Carreras and J. Bonet. Unfortunately, some of 
their important results appear in Spanish publications not widely 
available. Fortunately, the book under review redresses this sit
uation beautifully, transporting to the New World a cargo richer 
than the plunder of conquistadors. As in a Goya painting, the 
book's subject is robust and beguilingly composed. Although some 
knowledge of tvs's is requisite, to most in the area the book is nec
essary and sufficient. Chapters 10, 11, and 12, respectively, make 


