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The reader will have surmised by now that the reviewer has 
a very high opinion of this book. The exposition is not perfect, 
with some repetition of arguments, and too many formulas, but 
such quibbles are overwhelmed by the service the authors have 
rendered by making such fascinating material available to a wide 
audience. The authors needed five years to write up their results; 
an outsider trying to learn all of this from partial results in the 
literature would have faced an impossible task. The book is acces­
sible to any motivated reader, although it is not easy reading; it is 
essentially self-contained, except for a few results which are cited 
(with references) in the later chapters. It cannot be the definitive 
treatment, since the subject is just getting started; recent develop­
ments include Borcherds' "two-variable moonshine," with many 
new concepts and results, but it is impossible to imagine a future 
treatment of these matters which would not be heavily influenced 
by this book. 
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The theory of classical Lie groups and algebras is of fundamen­
tal importance in mathematics as the meeting ground of algebra, 
analysis, and topology, and as an essential tool in modern physics. 
The book under review is the third in a series of volumes by Corn-
well. In the first volume he covers some basic group theory, Lie 
groups, representation theory, and applications to molecular and 
solid state physics. In the second volume he discusses Lie algebras, 
their relationship with Lie groups, the structure theory of semisim-
ple Lie algebras and their representation theory, Lorentz groups, 
Poincaré groups, and applications to the theory of elementary par­
ticles (global internal symmetries and gauge theory). Results and 
numbered equations from these two volumes are referred to in 
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the third volume, making it a bit awkward to read without the 
others at hand. The third volume covers two significant general­
izations of Lie theory, the Lie supergroups and superalgebras, and 
the infinite-dimensional Lie algebras (Kac-Moody algebras and the 
Virasoro algebra). These generalizations have come to play a large 
role in particle physics [GO] and involve serious new mathematics. 
The intention of the author is to overcome the communication bar­
rier, which makes it difficult for some physicists to penetrate the 
style of pure mathematical exposition which is commonly used. 
This means that the book is written for an audience of physicists. 
For example, explicit bases are given for vector spaces, summa­
tions with many explicit indices are used instead of abstract de­
scriptions, and representations are defined by giving the matrices 
which represent basis elements. There are no exercises, but there 
are five large appendices (147 pages) containing proofs, which were 
considered too distracting to include in the main text, facts about 
Clifford algebras, and tables of properties of the algebras studied 
in the book. 

In the first part one is introduced to superalgebras, superma­
trices, superspace, and supergroups, and given general properties 
of these algebras and their representations. A large section is de­
voted just to the Poincaré superalgebras, supergroups, and their 
representations. Familiarity is assumed with the theory of Clif­
ford algebras and spinor representations, as presented in the ap­
pendix, and with the theory of Lorentz groups, Poincaré groups, 
and their representations, as presented in volume two of the series. 
Another section describes Poincaré supersymmetric fields in two 
formalisms. These are supersymmetric versions of quantum field 
theory, written for the reader who already has some familiarity 
with ordinary quantum field theory. 

The next several sections are presented in a completely differ­
ent style, much easier for a mathematical audience to read. They 
cover basic facts about the finite-dimensional simple Lie super­
algebras, the infinite-dimensional Kac-Moody Lie algebras, their 
highest weight representations, vertex and spinor constructions of 
some representations, and the theory of the Virasoro algebra and 
its highest weight representations. The author successfully imparts 
a working knowledge of the essential results of these subjects with­
out giving most proofs. He has made a serious effort to provide 
references to the literature where proofs and further details can be 
found. The book concludes with a section on the algebraic aspects 
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of string and superstring theory, presented in the physicists style. 
Despite the limitations of space in a review such as this, I would 

like to say something about some of the mathematical topics in 
this book. A Lie algebra is a vector space L equipped with a bi­
linear product " [ , ]", called the bracket, which is skew-symmetric, 
[a, b] = -[b, a], and satisfies the Jacobi identity 

[a, [b, c]] + [£, [c, a]] + [c, [a, b]] = 0. 

A Lie superalgebra is a Z2-graded vector space L = LQ e L{ 

equipped with a bilinear product called the superbracket, which 
satisfies graded versions of skew-symmetry and the Jacobi iden­
tity. Let a e L be called homogeneous if a e L0 or a e L{, 
and let deg(a) = i if a e Lt. For a and b homogeneous elements 
of L let sgn(a, b) = ( _ i ) d e ^ d e ^ ) . Then the graded version 
of skew-symmetry is [a, b] = -sgn(<z, b)[b, a] and the graded 
Jacobi identity is 

sgn(<z, c)[a, [b, c]] + sgn(6, a)[b, [c, a]] + sgn(c, b)[c, [a, b]] = 0. 

Of course, this means that L0 is a Lie algebra and L{ is an L0-
module. In Lie theory one has obvious analogs of many ring theory 
concepts (e.g., ideals, quotients, homomorphisms) and some group 
theory concepts (e.g., solvability, nilpotence, simplicity). A great 
achievement was the classification of the finite dimensional simple 
Lie algebras over C by Cartan. Up to isomorphism, each such 
algebra is uniquely determined by an integral "Cartan matrix," A = 
[(*ij] > 1 < U j < I, where au = 2 , atj < 0 for i ^ j , and atj = 0 
iff ajt = 0. 

A basic theorem of Serre gives a description of L by generators 
and relations from the data in the Cartan matrix. These finite type 
Cartan matrices, all positive definite, fall into four infinite classes, 
At, Bl, Cl, D[, and five exceptional cases, E6, E7, E%, F4, 
and G2 . Kac [Kl] and Moody [Mol] independently developed the 
idea of using any integral matrix satisfying the above conditions 
to define a Lie algebra with Serre's generators and relations. In the 
case where the matrix is degenerate but every submatrix is of finite 
type, called an "affine" matrix, the resulting infinite dimensional 
affine Lie algebra can be described explicitly as follows. Let g be 
a finite dimensional simple Lie algebra and let C[t, t~l] be the 
ring of polynomials in t and t~l. For x e g and n e Z let 
x[n) = x (g> tn in the "loop algebra" g <g> C[*, t~l]. Let 

g = g<g>C[f, t~l]®Cc 
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be the central extension of the loop algebra with the brackets 

[x(m), y(n)] = [x, y]{m + n) + m{x, y)àm_nc 

where {x, y) is the Killing form on g normalized so that {a, a) = 
2 for long roots a. An affine Kac-Moody algebra is either such a g 
or a subalgebra obtained from it by a finite order automorphism of 
g. In either the explicit description or the generators and relations 
definition, it is necessary to form the extension g = g e Cd by 
adjoining a derivation d such that [d, x(m)] = m x(m). Then 
with respect to the Cartan subalgebra spanned by c, d and a Car-
tan subalgebra h of g, one has an affine root system A, an affine 
Weyl group W and simple roots a0, ax, ... , al, which generate 
A. In fact, it is natural to adjoin the Witt algebra spanned by all the 
derivations d(n), n e Z, such that [d(n), x(m)] = m x(m + n) 
and [d(m), d(n)] = (n-m) d(m+n). On highest weight represen­
tations of g one has the Sugawara construction of operators Lm , 
m e Z, representing a central extension of the Witt algebra called 
the Virasoro algebra. The commutator of Ln with the operator 
representing x(m) is the operator representing m x(m + n), but 
one has [Lm, Ln] = (n-m) Lm+n^-^(m3-m)Sm __nc for central 
element c . The construction of representations of the Virasoro 
algebra is very important in conformai field theory and provides an 
essential link between that subject and the representation theory 
of affine Kac-Moody algebras. 

Any Kac-Moody algebra has a root system, a Weyl group, sim­
ple roots, and highest weight representations. For infinite dimen­
sional Kac-Moody algebras which are not affine one does not have 
at this time an explicit description of the whole algebra. It is a 
very important open problem to discover such a description, or 
even to elucidate the dimensions of the root spaces. When the 
Cartan matrix is "symmetrizable," that is, when there exists a ra­
tional diagonal matrix D such that DA is symmetric, then the 
generators and relations description suffices to prove analogs of 
the Weyl character and denominator formulas. The denomina­
tor formula looks like a summation over the Weyl group equals a 
product over the positive roots, explicitly involving the root mul­
tiplicities, and implicitly determining them. In the affine case, 
where all ingredients are known, this gives the famous Macdonald 
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identities for powers of the Dedekind /̂-function [Mac, K2, K3, 
LI, L2, Mo3]. The character formula is a multi-variable power 
series identity whose specializations can give many combinato­
rial identities [FL, LMi, L3, L5]. For the simplest affine algebra 
A^ , which is g for g = sl{2), the representation theory gives 
the Rogers-Ramanujan identities and infinitely many generaliza­
tions due to Gordon, Andrews, and Bressoud [LW2-LW6]. For 
rank three hyperbolic Kac-Moody algebras, it is very interesting 
to note that the Weyl groups are hyperbolic triangle groups [Yo] 
(PGL(2, Z) in one case). The connection between characters of 
highest weight modules for affine algebras and modular functions 
has been extensively investigated [Fr3, K4, KP1, KP3, KW1, KW2, 
L4], and plays an important role in applications to physics. For 
rank two hyperbolic algebras there is a connection with Hilbert 
modular forms [LMo], and for the rank three hyperbolic algebra 
with Weyl group W - PGL(2, Z), there is a connection with 
Siegal modular forms [FF1]. 

Any irreducible highest weight representation of a Kac-Moody 
algebra can be constructed as the quotient of a Verma module 
by its maximal proper submodule. This construction suffices for 
some purposes, but in some cases other constructions are known 
which provide much more information and give a connection with 
physics [FF2, Fr2]. Two such constructions are known as the 
'Vertex" [LW1, FK, KKLW] and the "spinor" [Frl, KP2]. Since 
they have such serious applications, these constructions have a rep­
utation among the general mathematical public for being difficult. 
The techniques needed for proofs and the twisted versions [KP4, 
L6] may somewhat justify such a reputation, but the constructions 
are essentially simple, elegant, and easy to describe. 

In its simplest form, the vertex construction gives a represen­
tation of g for g of type A, D, or E, from the even integral 
root lattice A of g. A key ingredient is the "bosonic Fock space" 
representation of the infinite dimensional Heisenberg subalgebra 
h = h ® C[t, r 1 ] e Cc. For h G h, the "creation" ("annihila­
tion") operators h{n), n < 0 ( n > 0 ) act by multiplication (dif­
ferentiation) on the symmetric algebra S(h~) of polynomials in 
the commuting variables h(n), n < 0. To get a representation of 
g it is necessary to extend this space by tensoring with the group 
algebra of the root lattice, C[A]. Let a be a root of g and let 
xa be a root vector which is part of a Chevalley basis of g. The 
vertex operators Yn(e

a) representing x (n) e g for n e Z on 
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V = S(h ) ® C[A] are the coefficients of the generating function 

Y(ea, z) =exp £ > ( - m ) ^ - exp - £ a ( m ) ^ - )eV ( 0 ) e a 

ym>l J \ m>\ J 
= J2Yn(ea)z—\ 

nez 
The only details remaining to be given are how the operators ea , 
a(0), za!(0), and ea act on V. They all act on the group alge­
bra C[A], which has basis {ex\X e A}. The operator ea acts 
by multiplication, ea • e = ea+ , and the operator a(0) acts 
by a(0) • ex = (a, X) ek so za(0) • ex = z{a'X) ex. The opera­
tor ea acts by ea • e

A = e(a, A) £A where e : A x A -• {±1} 
is a 2-cocycle (which can always be chosen to be bilinear) repre-
senting the unique cohomology class in H (A, {±1}) such that 

It is also easy to give the generating function Uz) = Yln& Lnz~n 

whose coefficients are operators representing the Virasoro alge­
bra on V. For h e h define the generating function h(z) = 
J2nez h{n) z~n • For hx{m), h2(n) G h define the "bosonic normal 
ordering": hx{m)h2[n) : = hx(m)h2(ri) if n > m, \{hl{m)h2{n)-\" 
h2(n)hx(m)) if « = ra,and h£ri)hjjri) if n<m. Let {Ap...,/^} 
be an orthonormal basis of h with respect to the form ( , >. Then 
we have 

£(*) = -* E : W W = • 
Of course, there are many important developments in represen­

tation theory that involve modifications of the simplest construc­
tions [Ben]. In particular, one has twisted versions from automor­
phisms of g having different gradings, and one has constructions 
of the nonsimply-laced affine algebras [BT, GNOS], including the 
exceptional ones. Perhaps the most significant extensions of these 
ideas are the "vertex operator algebras" [Bo, FLM, FFR], their 
modules, and intertwining operators between modules. These are 
new kinds of algebraic structures, which can be constructed by 
making generating functions of operators Y(v, z) for each vector 
v e V, incorporating and vastly extending both the affine algebras 
and the Virasoro algebra. They are at the heart of conformai field 
theory, the Frenkel-Lepowsky-Meurman construction of the Mon­
ster Moonshine module [FLM], and the new developments in knot 
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theory [J, TK, W, YG]. These topics are all beyond the scope of 
CornwelPs book. 

Let me conclude with a few critical remarks about the book 
under review. I expected the author to have complete mastery 
of the mathematical aspects of the material. For the most part 
that expectation was satisfied, but I did find a few glaring errors, 
which somewhat shook my confidence in the author. On page 51 
he gives an incorrect definition of differentiability of a Grassmann-
valued function on an open subset of Rm . Even allowing for an 
obvious misprint, his definition involves a possible division by 
zero. On page 238 he defines a subalgebra as the "union" of two 
other subalgebras instead of their sum. On page 310 he makes the 
statement that the parameter t in g ^ C ^ f 1 ] is a real number. 
That strange interpretation would make the tensor product collapse 
to g. Of course the book has a few minor misprints, but nothing 
which would seriously bother an alert reader. Despite the fact 
that it is written for an audience of physicists, this book can be 
of use to mathematicians, but I cannot give it a strong positive 
recommendation. 
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