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Twistor theory originated in the work of Roger Penrose in the 
1960s and has developed in a number of directions. Its original 
context was mathematical physics, and for this aspect there are 
several recent surveys [9, 5, 11]. The monograph under review has 
very little to do with twistor theory as applied to physics and as 
discussed in the above references. In particular the authors state in 
the first sentence of their introduction: "The subject of this mono­
graph is the interaction between real and complex homogeneous 
geometry and its application to the study of minimal surfaces (or 
harmonic maps)." The word twistor theory refers to a particu­
lar use of a twistor space associated to a Riemannian manifold in 
order to generate minimal surfaces or harmonic maps from holo­
morphic maps into the twistor space. We will say more about this 
below. 

Weierstrass noticed in the nineteenth century that one could 
locally define minimal surfaces by means of holomorphic curves, 
i.e., any triple of holomorphic functions 

( / 1 5 / 2 , / 3 ) : C - + C 3 

which satisfies 

determines locally a minimal surface in R . This is given by the 
formula 

F(z) = Re(j\fl,f2,f3)dz\ . 

Moreover, all minimal surfaces in R admit such a parameteriza­
tion locally. This led to significant efforts in the twentieth century 
to represent minimal surfaces and more generally harmonic maps 
in terms of holomorphic objects. The monograph by Burstall and 
Rawnsley presents a sophisticated, elegant, and in-depth look at 
this question. 

In the study of instantons on the 4-sphere the fibration Z = 
P3(C) —• S4 played a fundamental role in the existence theory 
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and classification questions (see [11] for details and references). 
The space Z is called the twistor space of the 4-sphere S4. This 
particular fibration (defined naturally by the canonical mapping 
P3(C) -• Pt(H) = S4, obtained by choosing a quaternionic struc­
ture on C4), relates naturally to all of the developments in twistor 
theory that relate to mathematical physics. The map has fibres 
which are one-dimensional complex projective spaces, and Bryant 
[1] made the observation that maps of the form 

<j>: S2 - + Z 

which were holomorphic and transversal to the fibres and satisfy­
ing an additional holomorphic differential condition of first order, 
projected to minimal immersions of a 2-sphere in S4. Thus the 
problem of constructing minimal immersions in S4 was reduced 
to the construction of holomorphic objects in the associated twistor 
space. This theorem of Bryant (and others in similar contexts by 
other mathematicians) led to the search by the authors for a gen­
eral family of "twistor spaces" Z —• M for M a Riemannian 
manifold with the property that harmonic maps 

(t>: N-^M 
were realized as projections of "holomorphic" maps 

satisfying additional geometric and infinitesimal conditions. 
In all cases the twistor space is fibred over the target Riemannian 

manifold M, and the space Z and the fibres are almost complex 
manifolds, sometimes with more than one almost-complex struc­
ture of interest at the same time, and the notion of "holomorphic 
mapping" from the domain space N (almost always a Riemann 
surface with its usual complex structure) to the twistor space Z is 
in the sense of preserving the almost-complex structures. 

The class of manifolds M for which this methodology is suc­
cessfully carried out in this monograph are the inner Riemannian 
symmetric spaces. Here inner means that the involution required 
in the definition of a Riemannian symmetric space is an inner au­
tomorphism. This is equivalent to M = G/K being inner if and 
only if rank G = mnkK, in the standard representation of M as 
a quotient of a semi-simple Lie group G by a maximal compact 
subgroup K. These spaces are always even-dimensional and in­
clude the even-dimensional spheres and the Hermitian symmetric 
spaces of semisimple type. 



456 BOOK REVIEWS 

The authors construct twistor spaces which are flag manifolds 
(generalizations of classical complex Grassmannian manifolds), 
which are defined in terms of semisimple Lie groups and their 
complexifications. Flag domains also play a role in this context. 
These are open subsets of a flag manifold which are open or­
bits of real forms of the complex transitive groups involved (e.g. 
the upper half-plane is the orbit of SL(2, C) action on Pj(C) = 
SL(2, C)/P, where P is a parabolic subgroup). 

The book divides into three parts: 

Homogeneous geometry. This is a study of all of the homogeneous 
spaces and their properties used in the later parts. This includes 
very nice representations for the Levi-Cevita connection, using a 
generalization of the 1-form of Maurer-Cartan for the homoge­
neous spaces. This gives very useful representations for curvature, 
torsion, and other differential-geometric objects of interest which 
occur in the theory of harmonic maps. 

Twistor theory. Here twistor theory means twistor spaces which 
fibre over Riemannian manifolds, and in which harmonic maps 
lift to holomorphic ones as described briefly above. The existence 
of such twistor spaces is delicate and uses the full strength of the 
root structure for complex semisimple Lie algebras which is sum­
marized in a suitable form in a special chapter. 

Harmonic maps. Here the machinery of the previous chapters is 
put to use. To find existence of suitable holomorphic objects in the 
twistor space, the authors make full use of the decomposition the­
orem of Grothendieck [6] for vector bundles on Riemann surfaces 
into the direct sum of line bundles of a specific form. A similar fil­
tration of vector bundles due to Harder and Narasimhan [7] is also 
used to provide existence theorems. Previous work of Calabi [3], 
Eells-Wood [4], and Bryant [2] is subsumed in one general proof 
using these methods. The authors give a further application of 
these ideas for harmonic maps into simple Lie groups (belonging 
to a large class of such groups), generalizing work of Uhlenbeck 
[10] concerning harmonic maps of S2 -+ U(n). 

The book appears to be very carefully written but will be tough 
going for those not conversant with standard Lie theory and struc­
ture theory as represented by Helgason's classical book [8]. Most 
of the technical work is done at the Lie algebra level and that is 
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part of the virtue in that a difficult problem in nonlinear analysis 
admits algebraic solutions in this context. 

The introduction gives a good outline of the material and pro­
vides a guide through the various technical chapters (Chapters 1-5) 
leading up to the culmination in the last three chapters where ex­
istence and classification of harmonic mappings is given in a wide 
range of circumstances. This work includes new results on stable 
harmonic 2-spheres which is joint work with Simon Salomon. The 
authors are to be commended for providing valuable insight into a 
beautiful and mysterious subject: how to construct harmonic maps 
from holomorphic ones. 
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