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A function u : Q —• [-00, oo), where Q is a domain in Rm , 
is said to be subharmonic (s.h.) if it is upper semicontinuous, not 
identically -oo, and satisfies the sub mean value inequality: its 
average over the boundary of each ball contained in il is greater 
than or equal to its value at the center. For m = 1 the s.h. func­
tions are the convex ones. 

S.h. functions were introduced by F. Riesz in the 1920s. They 
have come to play a central role in several branches of analysis, 
notably potential and complex function theories. The book under 
review is a sequel to Subharmonic functions, vol. 1, which Hayman 
co-authored with P. B. Kennedy [HK]. Volume 1 was devoted to 
development of the rudiments of potential theory, such as solution 
of the Dirichlet problem for Au = 0, and to the basic properties of 
subharmonic functions, such as the Riesz decomposition theorem. 
(If u is s.h. in Q then its distributional Laplacian Aw, known 
as the Riesz mass, is a locally finite positive measure on Q, and, 
loosely speaking, u equals a potential of Aw plus a harmonic 
function.) The theory expounded there works pretty much the 
same in Rm for every m > 2. 

Volume 2, at 590 pages, is twice as long as Volume 1. Its princi­
pal aim is to study, in depth, certain families of extremal problems 
about entire and meromorphic functions of one complex variable. 
Most of these questions first arose in the early part of the twentieth 
century. If ƒ is analytic in fi c C = I 2 then log | ƒ| is s.h., while 
if ƒ is meromorphic then log | ƒ | is " <5-subharmonic," that is, the 
difference of two s.h. functions. The problems treated here turn 
out often to be most naturally posed in the more general s.h. or 
£-s.h. context. Thus, the emphasis in Volume 2 is on functions s.h. 
in all of C, although there are also numerous results for functions 
in the unit disk of C, as well as some that still hold in Em for 
m > 3. 

One of the book's main themes is the relation between the max­
imum and minimum values of s.h. functions on circles. Let u be 
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s.h. in C. Define functions A, B : [0, oo) -> [-00, 00) by 
if) if) 

A{r) = A(r, u) = inf u(re ), B(r) = B(r, u) = sup w(re ). 
0 9 

Then, by the maximum principle, B{r) increases as r increases, 
but the behavior of A(r) is often erratic. For instance, it can be 
-00 for some values of r. Nevertheless, if B(r) increases not 
too rapidly, then there are senses in which the growth of B is 
controlled by that of A. The most primitive manifestation is 
when l im^^ B(r) < 00, so that u is bounded above in C. Then 
u must be constant and hence A(r) = B(r). This phenomenon is 
peculiar to two dimensions. For m > 3 there exist nonconstant 
s.h. functions u on Rm which are bounded above, and there exist 
functions for which A(r) = -00. Thus, the "A controls 2?" 
results discussed below have no immediate analogues in Rm for 
m > 3, although there are kindred results, such as the analogue of 
"Paley's conjecture," in which B{r) is controlled by a mean value 
of u on spheres \x\ — r. 

The order X of a s.h. function u on C is defined by 

r->oo l o g r 

Following up earlier work by A. Wiman, Littlewood (1908) 
proved the existence of constants C(A) > -00 such that if u is 
s.h. in C with finite order A then 

v Mm-C(A)-
Littlewood stated his result for functions of the form u = 

log I ƒ I, with ƒ entire. (Remember, Riesz's introduction of s.h. 
functions was eighteen years in the future.) His technique still 
works, though, for general s.h. u. Similar considerations exist for 
some of the other events appearing in the history below. Hence­
forth, we shall attribute to various authors s.h. or £-s.h. statements 
which they actually made in terms of entire or meromorphic func­
tions. A method developed by B. Kjellberg, P. B. Kennedy, and 
W. al Katifi for approximating s.h. u by functions log | ƒ| often 
enables one to find extremal functions of the latter form for the 
problems considered here, and thereby shows that the inequalities 
proved are still sharp within the originally stated context. 

Let us return now to Littlewood's inequality (1), and let C(X) 
denote also the largest possible such constant. Littlewood showed 
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that for 0 < X < \ we have C(X) > cos 2nX. He conjectured that 
for 0 < X < 1 the correct value should be C(X) = cos nX. An 
extremal function would be uk, defined for 6 e [-n, n] by 

uk{rel ) = r cosAÖ. 

Note that for z e C\(-oo, 0)] uk(z) = Re z is harmonic, so 
that its Riesz mass is supported on the negative real axis. Also, for 
fixed r, uk(reld) is a symmetric decreasing function of 6. Hence 

A(r, uk) = uÀ(-r) = (cos7rA)wA(r) = (cosnX)B(r, uÀ), 

so that the ratio A(r)/B(r) is constant when u = uÀ. 
Littlewood's conjecture for 0 < X < 1 was confirmed, indepen­

dently, by G. Valiron (1914) and by Wiman (1915). When X = 1 
it is still true that C(l) = - 1 , but the value of C(X) for X > 1 
remains unknown. Wiman conjectured in 1918 that C(X) = -1 
for 1 < X < oo. A. Beurling, who had been a student of Wiman, 
provided positive evidence in 1949 by showing that the lim sup 
in (1) is indeed > -1 for functions which assume their minima 
along a ray. Hayman and Kjellberg (1978) extended this to the 
case of minima along some curve. But Wiman's conjecture had 
been disproved for large X by Hayman in 1952. He constructed 
examples of infinite order for which A(r)/B(r) —> -oo, and others 
of finite order which show that l i m ^ ^ C(X) = -oo. It is possible, 
but seems unlikely to the reviewer, that C(X) = -1 might hold for 
X slightly larger than one. 

On the subject of genealogy, we note that Kjellberg was a doc­
toral student of Beurling. Hayman, whose graduate studies were 
at Cambridge in the late 1940s, was assigned by Littlewood for 
his thesis the task of constructing a counterexample to the Bieber-
bach conjecture. As Hayman related in his lecture at a conference 
in 1985 commemorating de Branges's proof of that conjecture, he 
did not succeed and never did obtain a Ph.D. Be that as it may, I 
think it fair to say that Hayman's subsequent body of work, part 
of which is presented in this book, represents the full flowering 
of one branch of the British tradition of hard analysis planted by 
Hardy and Littlewood. 

The Wiman-Valiron "cos nX theorem" inspired efforts by Pólya, 
Denjoy, and others. An account of work up to about 1953 is given 
in the book Entire functions, by R. P. Boas [Bo]. Kjellberg obtained 
a substantial improvement in 1963. Let u be s.h. in C. We make 
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no a priori assumption about its order. Let X be a given number 
in (0,1). 

Kjellberg's Theorem. Either 

(2) lim [A(r9 u) - (cos nX)B(r, u)] = oo 
r—•oo 

or else 

hm —^—- = a 
r—KX) yA 

exists, and is positive. 

The case X = \ had been proved earlier by Heins. If u in fact 
does have order X e (0, 1), we recover the original cosrcA theo­
rem by applying Kjellberg's theorem with X replaced by X + e for 
small e. Concerning the extreme cases, work by J. M. Anderson 
(1966), P. Fenton (1976), and others shows that if the lim in (2) is 
finite and if a < oo , then u must asymptotically strongly resemble 
aux. For example, the amount of Riesz mass n(r,u) in the disk 
\z\ < r must satisfy n(r,u) ~ a ^ ^ r A , and most of the mass 
is supported near a "piecewise radial" set { rel6(<r) : 0 < r < oo} 
where d(r) = 0n for 0H < r < 6n+l, with Er=i(ö„+i " Kf < °° • 
Such results are called regularity theorems. 

There are many other variations on the cos nX theme. For ex­
ample, P. D. Barry, also in 1963, gave lower bounds for the size 
of the set of r on which a s.h. function in C of order X e (0, 1) 
must satisfy A(r9 u) > (cosnK)B(r, u). Here K is preassigned, 
with X < K < 1. Barry's theorem, which improved one of Besi-
covitch (1927), was shown via examples by Hayman to be sharp 
for every allowable X and K . 

Let us return now to Kjellberg's theorem. We shall outline a 
proof constructed by M. Essen [E], which uses results of Hellsten-
Kjellberg-Norstad [1970]. The general ideas, which go back to the 
early days of the theory and are illustrative of its typical modus 
operandi, are three: 1. artistry with integrals, 2. harmonic ma-
jorization, and 3. especially, a symmetrization step. In this in­
stance one replaces u by a function v obtained by swinging the 
Riesz mass of u to the negative real axis. 

Suppose first that u is s.h. in A\(~l, 0], where A denotes the 
unit disk, and is continuous on A\{-1}. Then for r e (0, 1) 
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there is an integral inequality 

u{r)< ƒ [u(t) + u(-t)]L(r9t)dt 

+ / [u(el+) + u(e-l+)]H(r,<l>)d<l>9 
Jo 

where L and H are positive kernels. 
To prove this, note that a function subharmonic in a half disk 

is majorized by the harmonic function with the same boundary 
values. Apply this to u in the upper, lower, and right halves of 
A. Calculation of the half-disk Poisson kernel and iteration lead 
to (3). If u is harmonic in A\( - l , 0)] then equality holds in (3). 

Next, suppose that u is s.h. in A, and that supA « = J 8 ( 1 ) < O O . 
Then 

u(z) = - f g(z, C)dii(Q - [*P(z9 4>)dv{4>) + B(l) 
JA JO 

where g and P are the (positive) Green function and Poisson kernel 
for A, /u is the Riesz mass of u, and v is a nonnegative measure 
on the unit circle. Let u0 denote the total mass of v , and define 

v(z) = -[g{z9 -ICDdMC) - "op(z > *) + BM-
J à 

Then v is s.h. in A, harmonic in A\( - l , 0], with the same 
maximum on dA as u and the same Riesz mass in each disk 
\z\ < R < 1. Monotonicity properties of g and P show that for 
r € ( 0 , 1) 

v(-r) =A(r9 v) <A(r, u) <B(r9 u) <B(r9 v) = v(r), 
and for \z\ - r 

v{r) + v(-r) < u{z) + u{-z). 
Assume now that u is s.h. in A, that X e (0, 1), that B(l) = 1, 
and that for all r e (0, 1), 
(4) A{r9u)- (cos nk)B{r, u) < 0. 

The function 

U(z) = -(tan -ir-) Re ƒ 5—^r 
^ ^ 7o 1 - r 

satisfies (4) with equality, and also has U(el(^) = 1 for \</>\ < n. 
Applying (3) to v , and using the inequalities connecting w and 
t;, one shows that 

(5) B(r9u)< U{r)<CAX)r\ 
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The case A = \ is the "projection theorem" for harmonic mea­
sure, proved independently in 1933 by Beurling and R. Nevan-
linna. 

Let u be s.h. and nonconstant in C, and suppose that the lim 
sup in (2) is finite. Subtracting an appropriate constant, we may 
assume that A(r, u) < (cos nÀ)B(r, u) holds for all re (0, oo). 
Take 0 < r < R, and apply (5) to the function B(R)~~lu(Rz). 
The result is 

(6) r^B^^R^BWC^). 

The left-hand side is positive for large r. Letting R —• oo, we 
see that l i m ^ ^ R~À B(R) > 0. If this lim inf is +oo, the limit 
a in the conclusion of Kjellberg's theorem exists and is infinite. 
If the lim inf is finite, then by letting R —• oo through a suitable 
sequence we see from (6) that the corresponding lim sup is also 
finite. Thus, u has order A < 1. Let </>(r) = r" B(r). A limiting 
case of (3) applied to the v corresponding to u(zR) as R -+ oo 
leads to a convolution inequality of the form 

<t>(r)< f°° (t>(t)k(rt~x)Cxdt 
Jo 

for a certain positive function k. Essen proved a Tauberian the­
orem which asserts that for such k, if </> is bounded above on 
(0, oo) and l im^^ </>(r) > 0, then limr_>oo0(r) exists, thereby 
completing his proof of Kjellberg's theorem. 

We discuss now some extremal problems of the cos nX type in 
which A(f) and/or B(r) are replaced by other functional mea­
suring the growth of u. Let m{r, u) = ^ f*nu

r{rel6)dd. Paley 
(1932) conjectured that if u is s.h. in C with order A € [0, oo) 
then 

5(r, u) f 7rAcsc7rA, A< i 
l im —i—i—L < i 
f=^m(r9u) i TTA, A > \. 

This was proved by Govorov in 1969. The function rx cosA0 is 
extremal when 0 < A < \ . For \ < A < oo an extremal is 
furnished by the "harmonic spline" 

u(rel ) = r cosA0, |0| < ̂ j , 

= 0, ^ < | 0 | < K . 

Govorov's theorem was extended to higher dimensions by 
B. Dahlberg(1972). 
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A. Edrei and W. Fuchs (1960) studied £-s.h. functions of order 
A G (0, 1). They proved a result known as the "ellipse theorem" 
which specifies the possible values of the "Nevanlinna deficiencies" 
ô(u) and S{-u). Their analysis was based upon the fact that if 
a function v is harmonic in the slit disk A \ ( - l , 0] then the new 
function 

rd 

(7) V{(rew)= v(relt)dt, O < 0 < T T , 

J-e 
is harmonic in the upper half of A. 

Edrei (1967) proved a sharp upper bound for the sum of the 
Nevanlinna deficiencies of a meromorphic function ƒ in C of 
order X e [0, j]. He stated a conjecture for the case \ < X < 1, 
whose validity would follow from that of another, called the spread 
conjecture, giving precise lower bounds for the measure of sets {0 : 
log I f(rel6)\ > 0} in terms of the order and a deficiency of ƒ , for 
certain special values of r. It turned out that Teichmüller (1939) 
had also made a conjecture of this type. The spread conjecture 
was proved by the reviewer (1973). Its proof was motivated by 
two techniques mentioned above : the idea of replacing a given 
s.h. function « by a new more symmetric one v obtained by 
sweeping the mass to the negative axis, and the harmonicity of the 
integral (7). Suppose that u is s.h. in A. Define a function vt in 
the upper half A+ of A by 

u{rel ) = sup / u{relt)dt, 
JE 

where the sup is over all sets E c [-n, n] of Lebesgue measure 
exactly 26. 

Theorem, vt is s.h. in A+ . 

The spread conjecture can be proved by a harmonic majoriza-
tion argument together with an extension of this theorem to the 
case of <5-subharmonic u. Extremals are given by harmonic splines 
with positive mass on the negative real axis and negative mass on 
the positive real axis. Using Edrei's notions of "Pólya peaks" and 
"local Phragmén-Lindelöf indicator," along with subharmonicity 
of the star-function, J. Rossi and A. Weitsman (1983) have shown 
how Paley's conjecture, the ellipse theorem, and the spread theo­
rem, in more precise form, can all be proved by overlapping argu­
ments. 
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Perhaps the leading unsolved problem in this complex is the 
"A: (A) conjecture" of R. Nevanlinna (1929). In simplest form, it 
asks for the smallest constant fc(A) for which 

lim i ^ — V . / <k(X). 
r^o f*nu(rel6)dd ~ 

Here u is s.h. in C of order A, and A is positive real but not 
an integer. The traditional guess has been that an extremal should 
be furnished by our friend uÀ and its higher order brothers, 

ux(rew) = (-l)[XVcosM. 

For À £ (0, 1) this is so, by a special case of the ellipse theorem. 
For A > 1 it is open. The known methods all involve some type 
of symmetrization, and that theory is not yet sufficiently advanced 
to deal with problems when the supposed extremal, like ux for 
A > 1, fails to be a symmetric decreasing function of 6 . 

The subharmonicity of the *-function has had application to the 
solution of other types of extremal problems. For example, in 1974 
the reviewer used it to prove that the Koebe function has maximal 
integral means in the class of normalized univalent functions in 
the unit disk, and that integral means on circles of Green func­
tions and harmonic measures of plane domains D increase when 
the domain is subjected to a circular symmetrization. Weitsman 
(1986) showed the same is true for solutions of certain nonlin­
ear partial differential equations, including u = - log p, where p 
denotes the Poincaré metric of D. Results of this sort involving 
"Schwarz symmetrization" in Rm can be found in the book [Ban]. 
A very general symmetrization theorem for p.d.e.'s was announced 
in [ALT]. 

A conjecture of the same vintage and character as Littlewood's 
cos TTA conjecture, but more difficult, was posed by Denjoy in 1907: 
Suppose that ƒ is entire, and that log| / | has order A G (0, oo). 
Then ƒ has at most 2A "asymptotic values." The first proof was 
given by Ahlfors in his thesis (1930). Other proofs were pub­
lished by Beurling and by Carleman in 1933. As traced in the 
survey [Bae], each of these proofs led to extensive subsequent de­
velopments. Those by Ahlfors and Beurling had a strongly geo­
metric character and evolved into the theory of extremal length. 
Among the many descendants, we mention here only a theorem 
of S. Warschawski [1942] about conformai mapping of strip-like 
domains, which reverses the inequality in the result commonly 
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known as Ahlfors's distortion theorem. Warschawski's theorem 
supplies a potent tool for the construction of examples. For in­
stance, it can be used to show that R. Hornblower's (1971) con­
dition J0 log B(r, u)dr < oo, which insures that a s.h. function 
u in the unit disk has asymptotic values on a dense subset of the 
boundary, is nearly sharp. 

Carleman's method was more analytic. It involves convexity 
properties of the mean value ^ f*nu

2(reie)d0 when u is s.h. 
and nonnegative in a disk. Further work in this direction is due 
to, among others, Tsuji, Heins, and Hayman. Notable applica­
tions include exponential estimates for harmonic measure in terms 
of the function 0(r,D), which gives the angular measure of the 
largest arc of the intersection of the domain D with the circle 
\z\ = r. These estimates play a role, for example, in theorems 
of Hayman and Weitsman (1975) about means and coefficients of 
"weakly univalent" analytic functions in the unit disk. 

Subharmonic Functions, vol. 2 contains a full account of most 
of these results and methods, along with the solution of numer­
ous nearby extremal problems and the associated regularity the­
ory. And there is more. Much more. For instance, an exposition 
is given of various types of sparse sets in potential theory, with 
application to the theorems of Ahlfors-Heins and Hayman con­
cerning exceptional sets for Phragmén- Lindelof type theorems. 
The Wiman-Valiron theory about relations between the maximum 
modulus of an entire function and the size of the maximal term in 
its Taylor series is here, as is an extended form of Hall's lemma for 
estimating harmonic measure of sets in a half-plane, together with 
Hayman's counterexample to a natural conjecture for the sharp 
constant. 

Subharmonic functions, vol. 2 provides updates to many of the 
topics treated in the books by Boas [Bo, 1954] and Tsuji [T, 1959]. 
It describes solutions to a number of the problems in classical 
function theory assembled by Hayman in the 1960s [H], and com­
plements, with some small overlap, recently published books on 
potential and function theory by Duren [Du], Doob [Do], Garnett 
[G], and Koosis [K]. In its thoroughness it is reminiscent of Tsuji, 
but Hayman provides more motivation and, by being most gener­
ous with the details, becomes more easily digestible. The book is 
completely self-contained, except for material from Subharmonic 
functions, vol. 1 and introductory works on complex analysis such 
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as Ahlfors's text. The bibliography is extensive. An especially 
helpful feature is the practice of indicating beside each item the 
pages in the text where it is referenced. In his preface to [G], Gar-
nett states "Understand the figures and you understand the book." 
And indeed, his Bounded analytic functions is full of them. Subhar­
monic functions, vols. 1 and 2 together, contain 864 pages with, as 
best I can remember, no figures. The fact that both books succeed 
admirably in conveying related subjects illustrates the gratifying 
fact that in math, as in life, beauty can reveal itself in diverse 
guises. 

Devotees of precise one-variable classical complex analysis will 
find Subharmonic functions, vol. 2 a gold mine. Because of the 
wealth of methods so clearly presented, many other analysts with 
no particular interest in min vs. max for subharmonic functions 
or the other major motifs will also find this a valuable book. 
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