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uninitiate. I would personally have enjoyed a deeper and more leisurely voyage

with fewer stops en route.

Thus, I recommend this book as one to dig into with considerable pleasure

when one already knows the subject rather than a book from which to start to

learn it. In conclusion, however, Set-valued analysis goes a long way toward

providing a much needed basic resource on the subject.
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1. Deficiencies and virtues

In more ways than one, Professor Bucklew's book is a large deviation among

all probability texts I have ever seen. The book has two goals: to present the

basic results of a rapidly expanding branch of probability known as the theory

of large deviations and to apply the theory to a number of problems arising

in electrical engineering. Unlike all other texts on large deviations that have
been published to date, this one is addressed to the engineering community,

not to mathematicians. With this audience in mind, the author remarks in the

preface that the theory of large deviations has a great potential for applications

but is "unusually technical." His intention is to expose this material mostly
by means of heuristic arguments while at the same time presenting "the main

ideas and possible groundwork for the full-blown treatment." Approximately,

half the book is devoted to applications. Given the audience to whom the book

is addressed, it certainly sounds like an excellent plan.

Professor Bucklew has set himself a formidable task. It is one thing to write
a technically correct book that has precise statements and complete proofs of all

the results. Most books in mathematics are of this type. It is another thing—

perhaps even more demanding—to write a book that omits complete proofs but
motivates all the results by clear heuristic arguments. ' Composing successfully

Mark Kac was one of the masters of this type of exposition.
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such a text requires that the author have such a deep insight into the mathe-

matics that he or she knows what to emphasize and what to omit. Such a text

would be a very useful addition to the large deviation literature. I am afraid,

however, that Professor Bucklew has not written it.

This book is seriously flawed. In many places, the expository and technical
styles of presentation can only be described as sloppy. The level of mathemat-

ical rigor is much too low. Although essentially all of the mathematical results

used in the book are readily available in the literature, too many of these re-

sults are misquoted; applying them as stated could lead to wrong answers. Key

ideas in the theory are not given due emphasis. Important connections among

various facets of the theory are not made. Errors, inconsistencies, and mislead-

ing statements abound. I will substantiate these harsh judgments by means of

examples in the course of the review. My opinion is that notwithstanding the

book's wealth of fascinating topics and applications, it should not have been

published in its present form.

The making of a book, even a flawed one, is a tedious task. So I write this

review with a heavy heart. In fact, I would have preferred not to have written it

at all except for the obligation I feel to the scientific community. The review is

dedicated to all newcomers to the theory of large deviations who after reading

it will be forewarned about using this book as a learning tool.

I want to be fair by pointing out the book's virtues up front. Although

in my opinion the book is not suitable as an introduction to the theory, it is

probably fine for experts in the theory of large deviations seeking new and/or

interesting applications, in which the book abounds. Here is a sample: autore-

gressive processes (pp. 19-20), a theorem of H. Cheraoff concerning statistical

hypothesis testing (pp. 32-35), detection theory (Chapter VI), quick simula-

tion (Chapter VIII), parameter estimation (Chapter IX), information theory

(Chapter X). Chapters II-X contain sixty exercises that are all worked out in

some detail. Seven appendices contain useful background material on analysis,

probability, and statistics. Many of the mathematical derivations have a unify-

ing theme, which is a large deviation theorem for random vectors first proved

by J. Gärtner and later extended in [2]. The book presents useful heuristic

derivations—containing, however, a number of inaccuracies—of several im-

portant large deviation results for stochastic processes in the literature, includ-

ing Gaussian processes, dynamical systems perturbed by white noise, and slow

Markov walks. Finally, the Notes and Comments at the end of each chapter
provide useful information.

The reader may gain a hint about the problems contained in the text no later

than in the third paragraph of the preface. The author states he is "content that

the 'handwaving' sketches of some results contain the essential ideas and might

be made rigorous with sufficient amounts of real analysis and measure theory."

A key word in this statement is might, which suggests to me uncertainty on the

part of the author. Already, the reader is left wondering whether the sketches
can be made rigorous or not.

This doubt is not dispelled by reading Chapters II-V, which are the mathe-

matical core of the book. The numerous glitches contained here caused me to

doubt the accuracy of those theorems and applications in the book with which I

am less familiar. The existence of so many errors, inconsistencies, and mislead-

ing statements in a book of this type is obviously a serious hindrance for the
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newcomer who might be unable to locate or correct them. At this point, a coun-

terargument can be made. Since according to the preface the main audience

is students of information theory, communication systems, applied statistics,

and statistical signal processing, why should I make such a fuss about mathe-

matical rigor and clarity of exposition? My opinion is that a textbook "even"
for engineering students should make every attempt to be meticulous—though

not necessarily rigorous—in the presentation of mathematical ideas. After all,
the goal of this textbook is to present a new area of probability to people who

will apply the theory to real world problems. Carrying out such applications in-

evitably entails making approximations to the existing theory. This is a hopeless

task if the existing theory is not meticulously presented.

A specific instance of this kind of problem is Example 2 in Chapter IV, which

treats a stochastic process with a boundary. The author states incorrectly that

"these 'boundary' problems are of a technical nature and can be taken care of

by successive approximation techniques." After he makes this statement, he

indicates that he wants to study a specific event in which the boundary can

essentially be ignored. He then proceeds to apply a large deviation theorem of

A. D. Wentzell that is valid only for processes without boundaries but that gives

the correct answers for processes with boundaries when applied to events in

which the boundary is not involved. It is all terribly confusing. I am afraid that

a newcomer to the theory of large deviations will get the impression that bound-

aries can be disregarded altogether, regardless of the events under consideration.

This, of course, is completely false. In addition, the large deviation theorem

of Wentzell that is applied in this example is itself misstated in a number of

serious ways. Details will be given in Subsection 3c of this review.

Before proceeding with the discussion of the book, I will summarize some

key ideas in the theory of large deviations.

2. Some key ideas in the theory of large deviations

The theory of large deviations studies the exponential decay of probabilities

associated with certain random systems. An elementary example is provided

by the sample means of independent, identically distributed (i.i.d.) random

variables {X,., i e N} that are exponentially bounded. The latter holds if for

all a e R
E{exp(aXj)} < oo,

where E{-} denotes expected value. Let m equal the expected value E{X\]

of the random variable X\ and define the sample means

n

S„/n = '£xi/n   forneN.
¡=i

The weak law of large numbers states that for any e > 0,

(2.1) lim P{\Sn/n-m\>e} = 0.
n—>oo

In 1938, H. Cramer showed that the rate of decay of the probabilities in (2.1)
is in fact exponentially fast and gave a formula for the exponential decay rate.

This result, the first in the theory of large deviations, has been extensively gen-

eralized to cover many new situations. These situations include i.i.d. random

vectors taking values in Rd and in certain infinite dimensional spaces; Markov
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chains and Markov processes; Gaussian processes; stochastic processes arising

in numerous areas of application including statistical mechanics, interacting
particle systems, statistics, and information theory.

A general framework is needed to encompass these many situations. Let Sf

be a complete separable metric space and {Yn, n eN} a sequence of random

vectors taking values in 3?. Typically, the sequence Yn converges in probability

to a point Xo in 3? as n —► oo. Thus, for any Borel subset A of 3? whose

closure does not contain xo, the sequence of probabilities

(2.2) Qn{A} = P{Yn e A}

converges to 0 as n —► oo . The theory of large deviations addresses the natural

question whether these probabilities converge to 0 exponentially fast and if so

seeks to express the decay rate as a function of the set A . One of the pleasant

surprises of the theory is that the resulting expression often involves quantities

that are of fundamental importance for the underlying problem.

The exponential decay of the probabilities in (2.2) is abstracted in the key

concept of large deviation principle. Let {Q„ ,»eN) be a sequence of prob-

ability measures on the Borel subsets of Sf. Let / be a function mapping

3? into [0, +oo]. For any subset A of Sf, we write 1(A) for the quantity

infßtA Iiß) ■ The sequence {Qn} is said to satisfy the large deviation principle

(or LDP) with rate function I if the following three conditions hold.

(a) For each s eR the level set

(2.3) <t>(s)±{ßeä?:I(ß)<s}

is compact.

(b) For each closed set C in Sf, the upper large deviation bound holds:

(2.4) limsup/î-1logô,,{C}<-/(C).
n—>oo

(c) For each open set G in %?, the lower large deviation bound holds:

(2.5) liminfrt-'logßrtiG} >-/(<?).
n—>oo

Cramer's theorem proves that the distributions of the sample means {S„/n}

of i.i.d. exponentially bounded random variables satisfies the LDP. The rate

function is given by the formula

(2.6) I(ß) = sup{aß-h(a)},
a£R

where h (a), a € R, denotes the finite convex function

h(a) = logE{exp(aXi)}.

Formula (2.6) exhibits I(ß) as the Legendre-Fenchel transform of the convex

function h(a). Thus, I(ß) is convex and h(a) may be recovered from I(ß)

by reiterating the transform; viz., h(a) = supßeR{aß - I(ß)} .

In 1966, S. R. S. Varadhan discovered an important application of the LDP to

the asymptotic evaluation of certain integrals. Let F be a bounded continuous

function mapping 3f into R. He proved that if the sequence {Qn} satisfies

the LDP with rate function /, then

(2.7) lim «-' log / cxp[nF(ß)]Qn(dß) = sup{F(ß) - I(ß)} .
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This fact is easily motivated. If we summarize the upper and lower large devi-
ation bounds (2.4) and (2.5) by the heuristic formula

Qn(dß)xcxp[-nl(ß)]dß,

then the limit in (2.7) should equal

lim «-'log / exp(n[F(ß)-I(ß)])dß.
n->oo Joy

By analogy with Laplace's method, the latter limit should equal

sup{F(ß)-I(ß)}.

For the purpose of reference later in this review, I will comment on each

of the three conditions in the definition of LDP. Condition (a) is extremely

useful in many situations. It implies that I(ß) is lower semicontinuous and

guarantees that a rate function is unique. It also assures that I(ß) attains its

infimum on any closed set in the space. Conditions (b) and (c) applied to the

closed-open set 3? show that the infimum of I(ß) over the whole space %?

equals 0. Because of condition (a), we know that this infimum is attained on

a nonempty set of points—call it W—and that if A is any Borel subset of

%? such that the closure of A is disjoint from %, then the quantity 1(A) is

positive. By applying the upper large deviation bound (2.4) to the closure of A ,

we conclude that the probabilities Qn{A} converge to 0 exponentially fast. The

set £? often plays an important role in applications. For example, in the study of

statistical mechanical models, §" may be associated with the set of equilibrium
states of the model. This list of consequences of condition (a)—which may be

augmented by examining any rigorous text on large deviations—should highlight

its importance.

A natural question closely related to the upper and lower large deviation

bounds (2.4) and (2.5) is to find conditions on a Borel set A in Sf such that
the following large deviation limit exists:

(2.8) lim n-llogQn{A} = -I(A).
n—*oo

We denote by A and by A° the closure of A and the interior of A , respectively.

Since A D A dA° , the upper and lower large deviation bounds applied to the

respective sets A and A° show that

-I(A°) < liminfn-'logß,,-^} < limsupn"1 logQ„L4} < -1(4).

We conclude that the large deviation limit (2.8) holds provided

(2.9) I(A°) = I(A).

Any Borel set A satisfying this condition is called an I-continuity set.

The key large deviation theorem that is applied numerous times in the book

under review is the so-called Gärtner-Ellis theorem, which generalizes Cramer's

theorem. Let {Y„, n e N} be a sequence of random vectors taking values in

Rd and for a e Rd consider the limit

h(a) = lim n~x \ogE{exp(a, nYn)} ,

where (•, •) denotes the Euclidean inner product on Rd . Under the assumption
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that h(a) exists, is finite for all a e Rd , and is differentiable on Rd , the paper

of J. Gärtner [5] proves that the distributions of {Y„} satisfy the LDP with rate
function I(ß) = supQeRrf{(a, ß) —h(a)} . Gartner's result was extended in [2] to

cover the case where h(a) is finite only on a proper subset of Rd . If Yn equals

the «th sample mean of i.i.d. exponentially bounded random variables, then the

Gärtner-Ellis theorem reduces to Cramer's theorem. A slightly stronger form of

the theorem was found independently by M. I. Freidlin and A. D. Wentzell and

is proved in §5.1 of [4].
With these key ideas out of the way, it is time to return to the book under

review.

3. Detailed comments on chapters II-V

The introductory first chapter of the book discusses for an engineering audi-

ence the applicability of large deviation ideas to problems arising in the study
of communication systems. I will comment in detail on the next four chapters,

II-V, which are the mathematical core of the book. The remainder of the text

is devoted to applications and further developments of the theory: VI. Appli-

cations to detection theory, VII. Asymptotic expansions, VIII. Quick simulation,

IX. Applications to parameter estimation, X. Applications to information theory.

It is conceivable that these last five chapters are written with greater care than
the ones I read closely. But I must admit that having spent considerable effort

trying to straighten out Chapters II-V, I ran out of steam.

This section of the review serves two purposes. First, my claim that this

book is seriously flawed will be substantiated by citations of specific problems.
Second, I will try in many cases to indicate how these problems may be straight-

ened out—here, I am thinking of the newcomer to the theory. The reader with

book in hand may easily follow the details. Anyone without the book will easily

be able to get the flavor just by reading on.

3A. Chapter II. Cramer's Theorem and extensions

This chapter sketches proofs of H. Cramer's large deviation theorem of 1938

and the extensions of the theorem carried out first by J. Gärtner and later in

[2]. The presentation is seriously marred by the author's failure to define fully

and precisely the concept of large deviation principle (LDP). In each of the

large deviation theorems presented, the author gives the upper and lower large

deviation bounds but neglects to mention the standard condition that the rate

function have compact level sets. The latter is condition (a) in the definition

of LDP, as discussed in §2 of this review. Condition (a) and the condition that

the rate function be lower semicontinuous (condition (a) implies the second)

are dismissed in the Notes and Comments as being "technical considerations

[that] will rarely, if every [sic], be necessary." Unfortunately, the author proves

himself wrong. To have included condition (a), which should not be considered

technical at all, would have caused much less difficulty than to have avoided it.

There are at least three major instances in which mishandling condition (a)

causes trouble. The first involves the numerous consequences of condition (a)

noted in §2 of this review, many of which are very useful in applications. For

example, without condition (a), one cannot conclude that if A is a closed set
such that I(x) > 0 for all x e A, then the probabilities Qn{A} converge to 0
exponentially fast.
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The second appears in Chapter IV. In two separate theorems stated on pp. 61

and 68, the large deviation bounds are stated, not for arbitrary closed and open
subsets of the associated metric space, but in the terms of a formulation due to
M. I. Freidlin and A. D. Wentzell and presented in §3.3 of [4]. These authors

give a lower large deviation bound for arbitrary open balls, which is clearly

equivalent to the lower large deviation bound (2.5). They also give an upper

large deviation bound for certain closed sets defined in terms of the level sets

{O(s)} of the rate function. Under condition (a), this upper bound is equivalent

to the upper large deviation bound (2.4). Without it, the upper bounds in the

theorems on pp. 61 and 68 do not imply the upper large deviation bounds (2.4).

Thus, as the theorems are stated, it does not follow that the rate functions are

the given functions /(/) ?

The third instance related to condition (a) arises in Chapter V, in the state-

ment and proof of Varadhan's theorem on the asymptotic evaluation of certain

integrals (pp. 84-85). This theorem was mentioned in §2 of this review. Here

the book makes a misleading statement in the opposite direction. Although for

the first time in the text condition (a) is included, unfortunately it is not needed

in the proof of Varadhan's theorem at all. The boundedness and continuity

of the function F together with the upper and lower large deviation bounds

suffice.
Besides neglecting to give the full definition of large deviation principle,

Chapter II makes another important omission by neglecting to isolate the con-

cept of an /-continuity set. We recall that if the set satisfies the continuity

condition (2.9), then the large deviation limit (2.8) holds. Because of this omis-

sion, there are a number of places where the author would like to deduce the

existence of a large deviation limit, but is unable to. These places are either

marked with the awkward parenthetical phrase "assuming limits exist"—see pp.

33, 51, 66 and 112—or are not indicated at all—see pp. 55, 62, and 93.
On p. 13 the author is wrong to imply that any convex set in Rd, d e N,

is an /-continuity set. Indeed, condition (2.9) is satisfied for all convex sets

having nonempty interior if and only if the rate function is finite on the whole

space; in general, this does not hold.
There are some other minor problems in Chapter II. On p. 7, the moment

generating function M(6) must be assumed to exist. Contrary to the statement

on p. 8, a convex function / on R is not in general continuous everywhere on

the set {x e R: I(x) < oo} , but only on the interior of this set.3 The general

relationship between the set {jceR: I(x) < oo} and the support of the random

variable x\ is not mentioned in the chapter4 although this information would

have been useful in understanding the assumptions in the book's somewhat un-

orthodox formulation of the Gärtner-Ellis theorem on pp. 15-16. If this general

relationship had been mentioned, then the reader would have been alerted to

the fact that the rate function in Cramer's theorem takes the value +oo on

some nonempty interval whenever the random variable x\ is bounded above

or below. Contrary to the statement on p. 9, the finiteness of the moment gen-

2That these functions have compact level sets is shown in the papers of A. D. Wentzell [6, 7].

3The correct statement is on p. 183 of Appendix B.

4This is well known. For example, see Theorem VIII.3.1 in [3]. A special case of this relationship

is treated in Property 3 on p. 8 of the book under review.
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erating function on all of R requires more than just the finiteness of moments

of all orders.
While I did not examine most of the exercises closely, I found errors in

two that I looked at. The random variables Y„ in Exercises 4 and 5 on p.

24 are ambiguously defined and the solution of Exercise 5 is incorrect; indeed,

(¡>(d) = \e\ - log 2 for all 6eR.

3B. Chapter III. Sanov's Theorem and the contraction principle

This chapter develops the large deviation theory—first investigated by I.

Sanov—of the empirical distributions of i.i.d. random vectors taking values

in Rd , deN. The empirical distributions take values in the set of probability
measures on Rd , which is the space on which the associated large deviation phe-

nomena must be studied. The rate function is the important quantity known as

the relative entropy or the Kullback-Leibler information number. The chapter

ends with a discussion of the contraction principle, which is a useful technique

for deriving a new LDP from a known LDP when the underlying probability

measures are related by a continuous mapping.

Although this chapter is cleaner than Chapter II, it does contain a number of

glitches. It would have helped the reader if the author had explained why the

maximizing 6 on pp. 27 can be found by differentiation (reason: convexity).

Almost half of p. 28 is devoted to showing that in the case of i.i.d. random

vectors taking values in a finite set of cardinality d, the rate function I(x)

for the corresponding empirical distributions equals +oo whenever x is not a

probability vector in Rd . However, this follows immediately and with hardly

any calculation from the lower large deviation bound applied to the open set that

is the complement in Rd of the set of probability vectors.5 The rate function in

the theorems on pp. 28 and 36 is not identified by name—the Kullback-Leibler

information number—until p. 92 in Chapter VI.6 The second display on p. 33

does not seem to fit. Despite the statement at the end of the first paragraph on

p. 37, no reference is given in the Notes and Comments concerning the LDP

for the quantities {L^} . The book does not mention an important application

of the contraction principle on p. 38, which is the relationship between the rate

function for the sample means of i.i.d. bounded random variables and the rate

function for the corresponding empirical distributions. This would have been
natural because of the discussion on p. 29 relating these two random quantities.

3C. Chapter IV. Gaussian processes and Wentzell-Freidlin theory

This chapter presents heuristic derivations of large deviation theorems for a
number of important stochastic processes appearing in the literature: Gaussian

processes, dynamical systems perturbed by white noise, and slow Markov walks

in discrete time and in continuous time. This chapter also works out a number

of examples that are intended to illustrate how the theorems may be applied.

I will start with what I consider to be the most poorly written portion of

the book: the theorem of A. D. Wentzell stated on p. 61 and Example 2 on

5For example, see p. 252 of [3].

6The term "relative entropy" appears in the Notes and Comments at the end of Chapter III, but

it is not made clear to what this phrase refers. On p. 160, the rate function is identified again but

the word "information" is dropped.
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pp. 63-65, in which the theorem is supposedly applied. The theorem is a large

deviation result concerning slow Markov walks in discrete time.

Comments concerning Wentzell's theorem on p. 61. The presentation has four

problems:
(a) The theorem is preceded by four extremely technical conditions that cor-

respond respectively to Conditions C, D, E, and F in the paper of Wentzell [7].

However, Condition 1 in the book lops off the last two hypotheses in Wentzell's

Condition C, including the most serious and complex restriction of all, which

is a continuity condition on the statistics of the underlying Markov chain.7 It is

precisely this condition that is violated by stochastic processes with boundaries.

In particular, it is violated in Example 2, in which the theorem is supposed to
be applied.

(b) In the statement of the theorem, the symbols limsup,,^^ and liminf^oo

must be interchanged. The former must go with the upper bound and the latter

with the lower bound.

(c) The large deviation bounds in this theorem are given in the terms of the

Freidlin-Wentzell formulation. Since the book neglects to include the condition

that the rate function have compact level sets, the upper bound in this theorem

does not imply the upper large deviation bound (2.4). Thus, as the theorem is

stated, it does not follow that the rate function is the given function /(/) (see
footnote 2).

(d) The book makes no attempt to motivate the four extremely technical

conditions that precede the statement of the theorem. In addition, although

this is the first appearance in the book of Freidlin-Wentzell-type bounds, no

comments are made concerning them, even just to warn the reader that the

large deviation bounds are not being given in the form used in the first sixty

pages.

Comments concerning Example 2 on pp. 63-65. This example involves a dis-

crete Markov chain on the nonnegative integers with a boundary at 0. Before

pointing out what feature of the process he is interested in, the author states

that because of the boundary behavior, "the process will violate some of the

conditions of the theorem of Wentzell." A parenthetical comment states that a

specific function is not differentiable. True enough, but this is not one of the

four conditions as given in the text. In fact, as pointed out above, the violated

condition is one that the author erroneously omitted. This is followed by the

incorrect statement—already noted in § 1 of this review but worth repeating—

that "these 'boundary' problems are of a technical nature and can be taken care

of by successive approximation techniques." The author then points out that

he is interested in the probability of the event that the Markov chain, starting

from 0, reaches a high level N before hitting 0 again. Rescaling the process,

the author calculates the asymptotic probability of the rescaled event as N —► oo

by applying the theorem of Wentzell, which is intended for processes without

boundaries. He is saved—and obtains the correct answer for the special case

considered in Example 2—because for this particular event, an approximation

argument based on a random walk without boundary (to which Wentzell's theo-
rem applies) renders the effect of the boundary negligible in the limit TV —► oo .

However, this is not at all spelled out clearly.

7Professor Wentzell devotes an entire section of his paper [7] to the discussion of this condition.



BOOK REVIEWS 169

Another way to have avoided the confusion in Example 2 would have been

to note that the scaled process in this example satisfies the LDP but with a rate
function different from the one given in the book (see Theorem 5.1 in [1]).

Chapter IV has a number of other problems. The * notation on pp. 44-46 to

denote h counterparts to /-2[0, T] quantities is confusing because of its stan-

dard use to denote dual spaces and adjoint operators. The quantities {a¿} on

line 5 of p. 45 should be identified as zero mean independent Gaussian random

variables. An "inverse kernel" is defined in the third display on p. 46 and ap-
pears in the rate function in the theorem attributed by the author to M. Schilder.

Without the condition that the covariance function be positive definite, which

is equivalent to the condition that all the eigenvalues {A^} be positive, the def-

inition of the inverse kernel makes no sense. However, the author neglects to
state this condition. The theorem on p. 46 attributed to M. Schilder was in

fact first proved by M. Schilder for Brownian motion and was later extended

by M. Pincus to Gaussian processes having continuous paths and having co-

variance functions that are continuous and positive definite. Unfortunately,
none of these hypotheses appears in the book's statement of the theorem. This

misquoting of the theorem foreshadows the even more serious misquoting of
Wentzell's theorem fifteen pages later.

A theorem of M. I. Freidlin and A. D. Wentzell on the asymptotics of the
mean exit time of certain dynamical systems perturbed by white noise is stated

on p. 54. The author does not discuss the significance of the second hypothe-

sis involving the exterior normal. I had great difficulty following the heuristic
explanation of this theorem given in the text.

In the motivation that precedes Wentzell's theorem on p. 61, the author refers

to the "jump sizes" of the process x"(i) (p. 56). However, the latter process is

defined by linear interpolation and has continuous paths; it has no jumps at all.

Examples 3 and 4 on pp. 70-72 are slightly more careful than Example 2.
A large deviation theorem that holds only for processes without boundaries is

applied to processes with boundaries in order to study events in which the effect
of the boundary can be rendered negligible by an approximation argument.

While the argument is not spelled out, at least in these examples the author

recognizes the problem that the boundaries pose. By reversing the order of

the presentation from that in Example 2, the author does not imply that the

theorem may be used to study all large deviation phenomena involving these

processes with boundaries, but only that the conclusions of the theorem can be
made applicable in the particular situations considered.

The large deviation theorem that is supposedly applied in Examples 3 and

4 is stated on p. 68. As in the erroneous statement of Wentzell's theorem on
p. 61, the symbols limsup„_00 and liminf,,-,,^ should also be interchanged

here. There is also an issue of consistency. The symbol limsupe_0+ in the

lower bound (which should be lim inf£_0+ ) and the symbol lim inf£_,o+ m the

upper bound (which should be lim sup£_,0+ ) are unnecessary. As on p. 61, it

suffices if the bounds hold for all e > 0.

3D. Chapter V. Large deviations for Markov processes

This chapter treats the large deviation theory of three related processes: (a)

the sample means of functionals of finite state Markov chains in discrete time,
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(b) the sample means of functionals of finite state Markov chains in continuous

time, and (c) the empirical distributions of finite state Markov chains in discrete
time.

Errors, inaccuracies, and misleading statements continue to appear. The

Perron-Frobenius theorem and the Gärtner-Ellis theorem are used to treat case

(a), in which the Markov chain must be aperiodic and irreducible. These

conditions guarantee that the operator Tg defined at the bottom of p. 76 is

primitive—i.e., that some power of Te is positive—and that the key asymp-

totic relation given near the bottom of p. 77 holds.8 Inexplicably, the author

omits the condition of aperiodicity both in the initial discussion on p. 76 and in
the statement of the theorem on p. 78 although he includes it in Appendix C.4,
where the Perron-Frobenius theorem is summarized (but without any comment

concerning the asymptotic relation used on p. 77). Without giving any reason
why, the author states on p. 78 the nontrivial fact that the function log/l(0)

satisfies the steepness condition of the Gärtner-Ellis theorem.

Case (b) is treated heuristically. Although on p. 80 it is stated that the form

of the rate function will be determined, no formula for the rate function is

given. It is left to the reader to figure out that one must substitute k(d) in his

formula (15) back into his formula (7), which appears under case (a).

Concerning case (c), the author neglects to give a full proof of the large

deviation principle. The latter may be derived as in case (a).9 Also as in case
(a), the condition of aperiodicity of the Markov chain is not mentioned along

with the stated condition of irreducibility. Finally, the author fails to point out

that the LDP for case (a) may be easily derived from the LDP for case (c) via

the contraction principle. This would give a second variational formula for the
rate function in the former case besides formula (7) in the book.

4. Summary

It is a pity that Professor Bucklew did not eliminate the numerous errors,

inconsistencies, and misleading statements in his book. If he had, he would

have produced not this highly flawed text, but a valuable contribution to the
large deviation and engineering literature.
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Reviewers for this journal are invited to give a somewhat discursive account,

and my review will not deviate from the custom so established. I taught un-

dergraduate differential equations for the first time at Harvard University in

1948 and have taught it more or less regularly ever since. Added to that are

about a dozen graduate courses on differential inequalities here and abroad. A

few thoughts arising from this experience are summarized first. Next comes a
survey of the current scene as reflected by popular texts, and finally Zwillinger's
book.

For those who, like me, prefer to start a detective story by peeking at the

end, I can save time by saying that Zwillinger's book is an outstanding scholarly

achievement, original in both plan and execution. It will surely appeal to all

who have more than a passing interest in differential equations. If you have

read this far, you probably qualify; so you might as well skip the review and get
the book.

General remarks

One of the charms of elementary differential equations is that most of the

proofs are easy, yet they yield results of obvious importance. For example, to

establish uniqueness for the solutions of

y" + p{t)y'+ q(t)y = f(t),       y(to)=yo,       f(to)=yi

on an interval containing to , let w = u2 + (u')2 where u is the difference of two

solutions. If the coefficients p and q are bounded, w satisfies a differential
inequality that implies w — 0 and uniqueness follows. A similar method gives

uniqueness for both linear and nonlinear equations of arbitrary order.

The importance of uniqueness can hardly be overestimated. If a differential

equation arises from a physical system, it is only by uniqueness that we can say
that our solution represents the behavior of the system, not merely a possible be-

havior of the system. On the theoretical side, uniqueness for the nth-order linear

equation underlies the entire theory of the Wronskian and linear independence.

Here is an example pertaining to existence. If a function 4> has a bounded

derivative on a finite interval (a, b), it is easy to show that the endpoint limits


