
BOOK REVIEWS 175

if it were the main text. That would be like using a book of cooking recipes as

the main text for organic chemistry. If we mathematicians abandon the goal of
logical development, who will replace us?
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In engineering, biology, and physics, one often encounters dynamical sys-

tems that may be described a systems with memory, or hereditary systems, or

systems with delayed feedback or time lag. The mathematical formulation and

basic theory of the differential equations that describe such systems may be said

to have begun with the work of A. D. Myshkis [9] and since that time there has

been a growing body of mathematical research on many aspects of theory and

applications, and the development of a general theory for what are now called

functional differential equations (FDEs). The present book is devoted to an

aspect of great practical importance, the stability theory for these equations. As

will be explained below, the local stability theory depends on analysis of the

location of zeros of associated "characteristic functions." A variety of meth-
ods have been proposed for treating the stability problem. Among these is the

method of Pontryagin, described in [ 10] and in the book of Bellman and Cooke

[1], but it is complicated for equations with more than one delay. Another is

the D-subdivision or D-partition method, in which the space of the parameters

of the equation is divided by hypersurfaces, the points of which correspond to

quasipolynomials having at least one zero on the imaginary axis. This method,

and others such as the tau-decomposition method and Nyquist criterion are de-
scribed thoroughly in the books of El'sgol'ts and Norkin [3], MacDonald [8],
and Kolmanovskii and Nosov [6]. Besides these, Liapunov functional tech-

niques (see Hale [4], Yoshizawa [12]) are sometimes useful for either linear or

nonlinear problems. Some general results for one delay equations are given in

Cooke and van den Driessche [2]. (G. Boese has pointed out that hypothesis
(iv) in Theorem 1 must be strengthened in the general case.)

Stépán comments, with considerable justification, that "none of these meth-

ods can be used generally for functional differential equations." For instance,

the widely-used D-subdivision method depends heavily upon the knowledge of

the hypersurfaces, which is generally difficult to find. His book is devoted to

this problem, and consists of two main parts. The first part is the explanation

of his own method, which he calls the "direct stability investigation," and which

is presented with full proofs in Chapter 2. The second part is the construction

of so-called stability charts, carried out for many equations with the aid of his
direct method in Chapters 3 and 4. In sum, these provide very useful and quite

broadly applicable tools for handling the stability problem.
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In order to explain the contributions in this book in more detail, we begin

with some basic definitions. A retarded functional differential equation (RFDE)
describes a system in which the rate of change of state is determined by the

present and past states. We may formulate such an equation as follows. Let
h > 0 be a given number (or +00), let R" be «-dimensional real space with

norm | • |, and let B denote the Banach space of continuous functions on

[-«, 0] into R" with the norm

||0||=    sup   |0(Ö)|,       cf>eB.
6€[-h,0]

Then an RFDE is an equation of the form

(1) x{t) = f{t,xt),

where /: /? x 2? —► R" and xt in B is defined by

xt(d) = x(t + 6),        0e[-/z,O].

h is called the lag or delay, and the equation is said to have bounded or un-

bounded delay according to whether h is finite or 00 . A function x : R —» R"

is said to be a solution of ( 1 ) with the initial condition xa = </>, irel, (j> € B,

if there exists a scalar ô > 0 such that xt £ B, xa = (f>, andx{t) satisfies (1)

for t in [a, a + Ô].
If the rate of change also depends on past values of the rate of change, the

describing equation is called a neutral functional differential equation (NFDE).
Although the book treats these equations too, we shall for the purposes of this
review restrict attention to RFDEs.

It is not difficult to define the basic concepts of Liapunov stability and asymp-

totic stability of an equilibrium (constant) solution of (1), in analogy with defi-

nitions for ordinary differential equations. These, and fundamental ideas about

Liapunov functionals, are described in Krasovskii [7], Hale [4], and other au-

thors. In treating the stability of constant solutions, one of the basic methods is

to linearize around the equilibrium, thus obtaining a linear RFDE of the form

(2) x(t) = L(xt)= [    [dn(d)]x(t + 0)
J—00

where L is a continuous linear functional and w is an nxn matrix of functions

of bounded variation on (—00, 0]. Associated with (2) is the characteristic
function given by

(3) D{k) = det i XI - I    eX0dr](dU ,        XeC.

A function of this form is an exponential polynomial or a more general function.

If n is constant in (—00, — h), the integral becomes a finite integral, and the
equation has a bounded delay. If the kernel m is constant except for a finite
number of finite jumps, the equation is frequently called a differential-difference

equation. The function D is called stable by the author if every solution of the
equation D{X) = 0 has negative real part.

For ordinary differential equations, the stability of the characteristic poly-
nomial is equivalent to (local) exponential asymptotic stability of the trivial

solution. For FDEs, the situation is more complicated, but the author shows
that under the condition that there exists v > 0 such that
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(4) /    e-"e\drijk(d)\<+00,        j,k=l,...,n
J—oo

stability of the characteristic function is necessary and sufficient for exponential

asymptotic stability of the RFDE (2). Therefore, the body of the book is devoted
to the problem of stability of the characteristic function.

The direct stability investigation begins with the well-known fact that the
number of zeros of D(X) in the right-half plane, given that there are no zeros
on the imaginary axis, is given by

N=^-   Mm   ÍD'{X)ID{X)dk
¿Til H—>+oo J

where the integration is over a "Bromwich contour" composed of a semicircle

of radius H in the right-half plane and a segment of the imaginary axis. Now

let R{co) and S(co) denote the real and imaginary parts, respectively, of D(ico)

for co e [0, 00). The following theorem is proved:

Theorem 2.15. Let the dimension n of the RFDE (2) be even, n = 2m. If D{X)
has no zero on the imaginary axis, and (4) holds, then the number N of zeros

with positive real parts is given by

r

N = m + (-ir^T(-l)k+lsfmS(pk)
k=\

where the summation is over the finite number of real positive zeros of R, p\

> • • • pr > 0. If n is odd, then a similar formula is obtained for N in terms of

the sign of R evaluated at the finite number of nonnegative zeros of S.

The advantage of Stépán's result is in part its generality—it holds for equa-

tions with multiple discrete delays and for distributed delays. And secondly,
explicit formulas are given, which involve the presumably simpler problem of

finding the real zeros of R and S. By setting N = 0, necessary and sufficient

conditions for asymptotic stability are obtained and these are stated as Theorem

2.19. The author also derives analogous results for certain classes of NFDEs, as

well as several necessary conditions and several sufficient conditions for stability

of RFDEs.
A stability chart is a diagram in the parameter space (in practice, a plane or

three-dimensional space) which shows those regions in which the equilibrium

of a system is stable. In applications, it is these diagrams which are often

of foremost importance, since they show what sets of parameters may give

rise to oscillations or instability. Stépán comments: "They are useful guides

for engineers in design work. Moreover, ... have an important contribution

in understanding the often peculiar physical behaviour of retarded dynamical
systems." In the first section of Chapter 3, the author uses his Theorem 2.19 to

obtain necessary and sufficient conditions for exponential asymptotic stability

for scalar nth order equations with either all even or all odd order derivatives

and with a single delay. The conditions consist of sets of inequalities relating the

coefficients; the author uses these to construct stability charts in several cases.
Other examples include an equation with two discrete delays. The structure of

the stability charts is intriguing, usually consisting of many disjoint sets. Have a
look at Figure 3.13, a chart for the equation with two delays, drawn in the space
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of these delays. The author does not attempt to draw general conclusions about

the structure of these charts for multiple delay equations. Some examples of

equations with continuous (distributed) delay, and with unbounded delay are

also treated.
Chapter 4, entitled Applications, begins with a section on Lotka-Volterra type

predator-prey systems, including one with a distributed delay in the conversion

of prey into predator. Asymptotic stability for the linearization around an equi-
librium is treated for several choices of the kernel. For one choice of the kernel,

the existence of a Hopf bifurcation is shown, and it is proved that the bifur-

cation is supercritical, that is, the bifurcating periodic solution is stable when

the delay is just above a critical value. The proof is based on the algorithm of
Hasssard, Kazarinoff, and Wan [5]. See the papers of Stech [11] for recent work

on Hopf bifurcation for FDEs. The chapter also contains interesting examples

of man-machine control systems, robotics, and machine tool vibrations, in all

of which there may be significant effects due to delays.

The book appears to be carefully written and quite free of errors or mis-

prints. The author has pointed out to the reviewer that there is an error in

the reformulation of a problem as an abstract differential equation (4.18), since

differentiability even of the initial function is required in defining the operator

A . Near the bottom of p. 16, there is an obvious misprint, where <f> should be
replaced by Ç.

The book is quite self-contained and its organization is clear. It provides

some very useful methods for analyzing the question of stability for FDEs.

Anyone with a need for such tools should have this text at hand.
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For simplicity we work over the complex numbers, C, in this review. Let X

be a projective variety, i.e. a reduced, algebraic subset of some projection space

¥N. Set theoretically X is defined by homogeneous polynomials. Assume

moreover that X is irreducible and «-dimensional.

A natural way to try to understand X is to study a hyperplane section, H,

of X, i.e. the intersection, H = X n fN~l , of X with a linear hyperplane,
pjv-1 c p/v ^ 0f p/v _ -j/he hope here is that the hyperplane section is simpler

than X and still contains usable information about X. This notion is quite

simple—after a linear change of coordinates it is nothing more than setting one

of the variables of the defining polynomials equal to 0.

Let me give some examples. Assume that the intersection is transverse and

H is smooth. One of the simplest possible manifolds, H, is P"_1. If n =

dimX = 1, then H would be a single point and it is not too difficult to show

that X is isomorphic to P1, X = P1 . For n = 2, it is easy to see there are

quite a few examples. One is X = P2 and H a linear P1 on P2 . A second is

X = P2 and H equal to a smooth conic, i.e. H is the zero set of an irreducible

homogeneous polynomial of degree 2 on P2 . A third example is X , a smooth

hypersurface of degree 2 in P3 and H the intersection with a linear P2 c P3

that is transverse to X. Note that in this case X = P1 x P1 and H can be

taken to be the diagonal. Though there are many others, the very beautiful

fact is that for all other examples, (X, H), with X a smooth surface, X is

a Hirzebruch surface, Fr, i.e. X is a P1 bundle over P1 , and H is equal to

a section. The Hirzebruch surfaces and their hyperplane sections are very well

understood, (see [Ha, Chapter V, §2]). There is one for each integer r > 0 with

F0 = P1 x P1 , and r the smallest integer such that there exists a section E of

Fr over P1 with E2 — -r. After this escalation of complication for n = 2, it

comes as a surprise that if n = dimX > 3 , and H = P"_1 , then X = Fn . This

is not accidental. The relation between a manifold and its hyperplane sections

gets very tight as the dimensions increase. Indeed as n increases it becomes

increasingly rare for a manifold to be a hyperplane section of another projective
manifold.

To study hyperplane sections, it is natural and convenient to work more

intrinsically. A line bundle, L.ona projective variety, X, is said to be very
ample if there is an embedding <f>: X -» PN for some N suchthat L = 4>*cf¥N{\)
where cfrn{\) is the line bundle whose Chern class is Poincaré dual to a linear
PN_1 .  Zero sets,  H , with their multiplicities, of not identically zero sections


