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For simplicity we work over the complex numbers, C, in this review. Let X

be a projective variety, i.e. a reduced, algebraic subset of some projection space

¥N. Set theoretically X is defined by homogeneous polynomials. Assume

moreover that X is irreducible and «-dimensional.

A natural way to try to understand X is to study a hyperplane section, H,

of X, i.e. the intersection, H = X n fN~l , of X with a linear hyperplane,

p/v-i çz FN , of FN . The hope here is that the hyperplane section is simpler

than X and still contains usable information about X. This notion is quite

simple—after a linear change of coordinates it is nothing more than setting one

of the variables of the defining polynomials equal to 0.

Let me give some examples. Assume that the intersection is transverse and

H is smooth. One of the simplest possible manifolds, H, is P"_1. If n =

dimX = 1, then H would be a single point and it is not too difficult to show

that X is isomorphic to P1, X = P1 . For n = 2, it is easy to see there are

quite a few examples. One is X = P2 and H a linear P1 on P2 . A second is

X = P2 and H equal to a smooth conic, i.e. H is the zero set of an irreducible

homogeneous polynomial of degree 2 on P2 . A third example is X , a smooth

hypersurface of degree 2 in P3 and H the intersection with a linear P2 c P3

that is transverse to X. Note that in this case X = P1 x P1 and H can be

taken to be the diagonal. Though there are many others, the very beautiful

fact is that for all other examples, (X, H), with X a smooth surface, X is

a Hirzebruch surface, Fr, i.e. X is a P1 bundle over P1 , and H is equal to

a section. The Hirzebruch surfaces and their hyperplane sections are very well

understood, (see [Ha, Chapter V, §2]). There is one for each integer r > 0 with

F0 = P1 x P1 , and r the smallest integer such that there exists a section E of

Fr over P1 with E2 — -r. After this escalation of complication for n = 2, it

comes as a surprise that if n = dimX > 3 , and H = P"_1 , then X = Fn . This

is not accidental. The relation between a manifold and its hyperplane sections

gets very tight as the dimensions increase. Indeed as n increases it becomes

increasingly rare for a manifold to be a hyperplane section of another projective
manifold.

To study hyperplane sections, it is natural and convenient to work more

intrinsically. A line bundle, L, on a projective variety, X, is said to be very
ample if there is an embedding <f>: X -» PN for some N suchthat L = 4>*<fpN(l)
where <fpN(l) is the line bundle whose Chern class is Poincaré dual to a linear
PN_1 .  Zero sets,  H , with their multiplicities, of not identically zero sections
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of L, are called very ample divisors. Note that every hyperplane section is a

very ample divisor and every very ample divisor is a hyperplane section for

the embedding of X into projective space given by using all the sections of

F(L). A line bundle, L, is called ample is Lk is very ample for some k > 0.

Not surprisingly, zero sets, A , with their multiplicities, of not identically zero

sections of such an L, are called ample divisors. Thus every very ample divisor

is ample, but not conversely. The simplest example is L equal to the line

bundle associated to a single point on X when n = dim X = 1. In this case L

is always ample, but very ample as we noted above only if X = P1. If L has a

zero set P"_1 for « > 2, and X is a manifold, then very pleasantly L is very

ample and the classification of the last paragraph applies.
From the above definitions is is clear that the essence of being a projective

variety is that there is a very ample line bundle. A polarized variety is a pair,

(X, L), consisting of an ample line bundle, L, on a projective variety, X . Even
if you are only interested in very ample line bundles on projective manifolds,

very soon you are forced to consider singular varieties and ample bundles.

The smooth, projective, surfaces, S, with a very ample divisor, C = P1 , have

a striking, minimality property. To explain it, note that if X is an irreducible,

«-dimensional variety, embedded in P^, and no hyperplane of P^ contains

X, then
deg(X) > JV-dimX+ 1.

Here deg(X) is that positive integer such that in homology X is deg(X) times

a generator of H2n (FN, Z). It turns out that if S is embedded by all the

sections of the line bundle, one of whose sections vanish on C , then deg(5) =

N — dim S + 1 = N — 1. The pairs (X, L) with L very ample on X and
with this minimum taken on for X embedded by T(L) have been known

since the 19th century. This led Fujita to introduce the very natural invariant

A(X, L) = deg(X) - dim T(L) + n , for polarized pairs, (X, L). This invariant,
the A-genus, is by the simple relation noted above > 0 whenever L is very

ample. Fujita showed the basic fact that for polarized pairs

A(X, L) > dim{.x e ^T|all sections of L vanish at x} + 1,

where the empty set is assumed to have dimension —1. Thus, the A-genus is

always > 0, and when it is equal to 0, L is spanned. Moreover Fujita showed

that if A(X, L) = 0, then L is very ample, and (X, L) has a simple clas-

sical structure (X is a so-called generalized cone). The first part of Fujita's

book, Chapter I, is a careful account of what is known about polarized pairs in
terms of the A-genus, and in particular there is a summary of what is known
about polarized pairs with "small" A-genus. Also included in this is the impor-

tant classification of Del Pezzo manifolds, which is due in large part to Fujita

(a Del Pezzo manifold, X, is a smooth projective manifold such that Kx =
—(dimX — \)L for some ample line bundle, L ).

The theory presented in Chapter 1 taken as a whole, and many of the indi-
vidual results in particular, are useful and beautiful.

Chapters II and III are about adjunction theory. This is an area where there
is currently a lot of activity. Large parts of the theory hold with X somewhat

singular, where the singularities are allowed to be worst in the case when L is
very ample. Rather than get involved with these technical details, I for sim-

plicity, sketch the theory for L an ample line bundle on an «-dimensional,
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projective manifold, X. Then it turns out that either (X, L) is on a short list

of "degenerate varieties," or there is a birational morphism r: X -» X', such
that

(a) r expresses X as a projective manifold, X', with a finite set F c X'
blown up;

(b) there is an ample line bundle, L' on X', such that L = r*L' — r~l(F),

i.e. the positive dimensional fibers, P, of r are isomorphism to P"_1
with Lp^cfpn-^l);

(c) Kx + (« - \)L £ Kx> + (« - \)L' with Kx> + (« - l)L' ample.

Because of the length of the lists of "degenerate varieties," I would not list them
here and in what follows, beyond saying they are very special and relatively

well understood, e.g. quadric fibrations, projective space bundles, quadrics, Del
Pezzo manifolds. The point of the above is that except for a list of well un-

derstood pairs, (X, L), you can replace (X, L), with a simpler pair, (X', L')

such that KXi + (« - \)L' is ample. If there are « - 1 zero sets of sections of

L' meeting transversely in a smooth curve, then Kc = {Kx< + (« - l)£')c , and

this is the only bundle with this property for such C if L is very ample and

Kx< + (« - 1)1/ is ample. (X', L') is called the reduction, ox first reduction.

Assuming « > 3, it follows that except for a further list of "degenerate
varieties," there is a birational map p: X' -* Y suchthat KX'+{n-2)L' = p*3P

for some ample line bundle 3?. To see how this result can be used to do

projective classification of varieties let X be a submanifold of P^ and let g

denote the genus of a smooth curve, C obtained as the transversal intersection

of X and a linear N - n + 1 dimensional subspace, FN~"+l cFN . If Kx> +

(n - 2)L' ^ p*5f for some ample line bundle 5?, then deg(X) < 2g - 2 . Thus
the classification of those pairs with deg(X) > 2g - 2, reduces to studying

special pairs on the list of "degenerate varieties." Very recently, [BFS, BS],

have succeeded in carrying the adjunction process one major step forward. It

is shown that, assuming « > 6, except for a further list it can be assumed that

some positive power of KY + (« - 3)^ is spanned by global sections and gives

a birational morphism. This reduces the problem, for « > 6, of classifying

pairs (X, L) with deg(X) > g - 1, to the study of a list of "degenerate" pairs.

The last chapter of the book discusses some important conjectures and work

in progress by a number of mathematicians. For example there is the very

important conjecture of Fujita that given an «-dimensional, polarized variety

(X, L), it follows that (Kx+(n-l)L)-L"-1 > -2. Note that there is an integer,
g, called the sectional genus of (X, L), that satisfies 2g - 2 — (Kx + (« - 1 )L) •

Ln~l. If there exist « - 1 zero sets of sections of L meeting transversely in a

smooth curve, C, then the genus of C is g. Fujita has shown this conjecture

in a number of cases including polarized varieties (X, L), with dim X < 3.
Another topic of great interest is "how much of adjunction theory holds for

ample vector bundles," For example the simplest result in this direction which

follows very easily from Mori theory is that given an ample vector bundle E of

rank r = « + 2 on a projective manifold, then XK + detis is ample. Work of

Fujita and Ye and Zhang is discussed. Let me call attention to [ABW and Z] for

further work done on this topic since Fujita's book appeared. Finally the book

ends with some recent work on computer aided generation of polarized surfaces

of low sectional genus. Here the interesting questions are not about individual
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examples, but about the asymptotic behavior of the set of examples as one or

another of the invariants (such as the genus) of the polarized surface goes to
infinity.

There is also a Chapter 0, which gathers in one place many results scattered

throughout the literature. I have only given a brief overview of the many in-

teresting results in this readable, very useful, book. This book belongs in the

library of very geometer.
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If ak denotes the number of fc-dimensional faces of a finite polyhedron

P, then x(P) = 5I(-I)*afc is a topological invariant of P. This beautiful
property of x{P) 8°es back to Euler—or even Descartes! (see [6]), and in the
200 years since his death a large edifice of algebraic topology has grown up in

which this Euler characteristic and its generalization have played a vital, and

for the most part, simplifying role. Thus in the framework of cohomology x(P)

is reinterpreted as XX-!)* dim Hk(P), so that the original Euler formula sheds

light on some aspects of these more sophisticated vector-space valued invariants
Hk(P).

But it is in the domain of smooth oriented compact manifolds that this Euler

number admits its most geometric interpretation. Namely, if A: M —► M x M

denotes the diagonal inclusion of M, then

X(M) — self-intersection of A(M) in M x M.


