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examples, but about the asymptotic behavior of the set of examples as one or

another of the invariants (such as the genus) of the polarized surface goes to
infinity.

There is also a Chapter 0, which gathers in one place many results scattered

throughout the literature. I have only given a brief overview of the many in-

teresting results in this readable, very useful, book. This book belongs in the

library of very geometer.
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If ak denotes the number of fc-dimensional faces of a finite polyhedron

P, then x(P) = 5I(-I)*afc is a topological invariant of P. This beautiful
property of x(P) 8°es back to Euler—or even Descartes! (see [6]), and in the
200 years since his death a large edifice of algebraic topology has grown up in

which this Euler characteristic and its generalization have played a vital, and

for the most part, simplifying role. Thus in the framework of cohomology x(P)

is reinterpreted as 2^(—I)* dimHk(P), so that the original Euler formula sheds

light on some aspects of these more sophisticated vector-space valued invariants
Hk(P).

But it is in the domain of smooth oriented compact manifolds that this Euler

number admits its most geometric interpretation. Namely, if A: M —► M x M

denotes the diagonal inclusion of M, then

X(M) — self-intersection of A(M) in M x M.



BOOK REVIEWS 183

That is, if we place the diagonal in a generic general position relative to itself by a

small perturbation, then x(M) measures the number of times these two versions
of M in MxM will intersect, intersection counted in the algebraic manner. In

this domain, #(M) therefore appears as a manifestation of "Poincaré duality"

on manifolds and in the middle of this century we have slowly learned how to

augment these Poincaré duality constructions. In particular, for differentiable

manifolds higher obstructions to disentangling A(M) from itself in. M x M

lead to the Pontrjagin classes pk e H4k(M) and via their intersections

pa(M)= I p?-plk
Jm

to new numerical invariants of M.
Presumably these numbers also admit a completely "combinatorial" algo-

rithm, and although some very interesting work has been done in this direction,

see [4], a completely satisfactory account of such algorithms is still missing. Of
course in view of the very satisfactory conceptual origins of the pa(M) such

a combinatorial algorithm would be more in the line of closing a chapter than
opening up of a new area of inquiry.

The exciting developments of the past 10 years or so is, therefore, that we

are now in possession of new numerical invariants, which seem to transcend

our standard algebraic topology know-how and which might well be the starting

point of a more profound understanding of the diffeomorphism category.

This development started with two unexpected discoveries of the 1980s, the

Donaldson four-manifold invariants, and the Vaughan Jones polynomials for

knots, and combined with the exciting exchange of ideas between physics and

mathematics, one is now on the threshold of overlooking a subject which is a

complex hybrid of statistical mechanics, algebraic topology and the representa-

tion theory of Lie groups. It is into some aspects of these mysteries that Michael
Atiyah's short book is an excellent introduction. It traces a fascinating path be-

tween these concepts with beautiful insights in many directions along the way.

The exposition is taut and the writing simple, elegant, and to the point. It is in
fact a tour de force of single-minded and jargon-free exposition.

Still, and this is of course the other side of the coin, to a mathematician,

this little volume has a certain chimerical quality. After all, we mathematicians

carry our heavy burden of ifs and buts and caveats for a good purpose: namely,

to produce statements that are precise and true. We therefore like to distill

our insight into theorems and then stick our neck out by asserting their eternal

verity. There are no theorems in The geometry and physics of knots. Rather, in

the prevailing manner of physics, Atiyah has here laid out the main lines and

plausibility of an argument that at this stage has not been brought to a complete

resolution. In short, we are dealing here more with poetry and inspirational

writing than with the prose of everyday mathematics, and in this spirit, it is a
pleasure to recommend this little volume to one and all.

The quest that is chronicled here is for a "conceptual" understanding of the

Vaughan Jones polynomials, rather in the way in which the already-mentioned

self-intersection of AM in M x M brings us to a more conceptual understand-
ing of the Euler number.

An even better illustration of what we are after is to be found in the history of

the Alexander polynomial of a knot. In 1928 Alexander described a combinato-
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rial procedure of associating to a 2-dimensional knot-projection, a polynomial

A(x) whose nonzero roots depended only on the knot and not on the particular
projection. Put differently, the projection of a knot k on the plane determined

Ak(x) up to the equivalence Ak{x) ~ ±xsAk(x). In this paper he also showed

that Ak(x) satisfied a "skein-relation." That is, given a link diagram and a

crossing-point, if one alters the crossing to create three different diagrams

then the Alexander invariants of the resulting links are related. Because Ln

is clearly simpler than L+ and L_ this skein relation can therefore serve to
define Ai inductively for any link L.

In the 1960s Conway found a way of normalizing the Alexander polynomial

to produce the Conway polynomial V¿, which is uniquely determined by the
following simple axioms:

0) v¿|TjL2 = vLl.vL2,

(2) Vo = 1,
(3) VUO-Vl_(0 = zVLo, z = t-rl,

and in terms of V¿ a representative of the classical Alexander polynomial is
given by the substitution:

AL{z2) = VL{z),       z = (t-rl).

After the fact, these combinatorial algorithms are therefore quite simple and
their invariance under the "Reidemeister moves"—which are known to mediate

between projections of equivalent knots—are also not too hard to check. On

the other hand, the induction involved in their computation is formidable and

seems to be of exponential growth in the number of crossings. They also seem
altogether mysterious from the purely algorithmic point of view.

On the other hand, we now also have quite different conceptual insights

into the Alexander polynomial. The first—already going back to Alexander's

paper—interprets Ak(x) as the determinant of a linking matrix associated to

the knot, and this interpretation also exhibits Ak(x) as the annihilator of a

torsion-module over Z[T, T~l] associated to the knot k by the following geo-

metric construction. Consider ni = 7Ti(S3 - k), the fundamental group of the

knot complement, and let M(k) be the covering of S3 - k associated to the
commutator subgroup [ni, n\] in ii\.

The group 7ii/[ni, ni] then acts on M(k) via the "deck-transformations,"

so that Hl (M(k) ; Z) is naturally a module over the group ring of ni/[ni, 7ii],

which—if we assume k connected—reduces to Z[T, T~1]. The annihilator of

the module Hl(M(k)) qua Z(T, T'1) now determines an element Äk{T) e

Z[T, T~x], which, up to the ambiguity already discussed, is seen to represent

Ak(T) ! This formulation therefore fits the Alexander polynomial squarely into
the mainstream of algebraic topology.
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Now the Jones polynomial Vk(t) of a knot also satisfies a deceptively simple

skein relation, to wit:

rlvL+(t)-tvL_(t) = (tl/2-rl'2)vLo

but so far the new polynomial has defied an algebraic-topology formulation of

the type we just found for its older cousin. Its conceptual roots seem to lie

in a discipline far removed from algebraic topology—namely, in statistical me-

chanics! and that is most probably the reason why its discovery took so long.

Vaughan Jones of course at first came upon VL(t) unexpectedly from quite a
different perspective—von Neumann's algebras and braids—but soon was able

to interpret Vl(í) in terms of statistical mechanics, and indeed, thereafter Kauf-

mann also produced a state-model for the Alexander polynomial [5].

Let me recall here that in a typical statistical mechanics model, one starts with
a configuration space X (think of a finite square lattice) and a set S of internal

states—or colours—for the elements of X (think of spin, where S — ±1). A

colouring of X—or state of the system—then amounts to the assignment of a
"spin" s(x) to each site of x e X.

The colourings are therefore elements of the function-space Map(JST; S).

Now the "energy" of a colouring (s) is then given by an algorithm for comput-

ing a number E(s) from the deposition of s, and in the simplest models, E(s)

will depend only on the nearest neighbor terms. This E(s) will also depend on

an auxiliary parameter, say T, which in practice is related to temperature.

These data therefore yield a "partition function"

Z(T)=      Y,      Et(s).
seMap(X,S)

Hence, to write down a state-model for the Alexander or Jones polynomials

consists of devising a procedure which converts a link diagram to a statistical

ensemble whose partition function yields the polynomial in question. I cannot

resist a personal diversion here. In a very early paper [2]—in fact, just after

learning and meditating on the Euler number in 1949—I devised a new combi-

natorial invariant for polyhedra, which, I realize now in retrospect, was derived
precisely by such a "state model" construction. I am afraid this invariant has

rested very peacefully in the literature these past 40 years, but who knows,

maybe its day is at hand. It seemed to me at that time only a curiousity with

no connections to anything and not interesting for manifolds; for it is mainly
concerned with the ways in which cells of the top dimensional hang together.

But to return to the subject at hand. The statistical model I have just de-

scribed carries with it—so to speak, trivially—a certain functorial point of view
which it took Witten and Graeme Segal to truly distill and explain to mathe-
maticians at large, and which we now call "Topological Quantum Field Theory."

The starting point of this development is the following observation concerning

any finite statistical model. Let Y0 and Y\ be two disjoint subsets of X. Then

given a colouring s0 of Y0 and a colouring Si of Y\ we can consider the set
n~x(so, S\) of colourings {s} of Y which extend so and Si, and sum their
energies to obtain a number which we nótate

(so,si)= f E{s)2?{s).
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Now let us write V(Yq) and V(Y{) for the free vector space spanned by the

set of respective colourings of Yq and Y\ . Then our integral clearly extends to

a bilinear function

V(Y0)^V(Yl)^R,

or, quite equivalently to a linear map

V(Y0)^V*(Yl),

which in the physics world is often called a "propagator." Note also that in

the language of measure theory this construction simply amounts to the push-

forward nature of a measure. Indeed, if V(X) denotes the space of real valued

functions on Map(X, S) then E{s)2¡(s) can be thought of as defining a mea-

sure on Map(X, S) with the total measure of Map(X, S) given by

Z(X)= f \E{s)®{s),
Juap(X,S)

that is, precisely the partition function of X.
The natural projection n of Map(X;5") to Map( Y0 JJ Y\ ; S) given by

restriction, thus pushes E{s)3f(s) to a measure on Map(Fn LI îi ; S) —
Map(Yo, S) x Mav(Yi, S) and so extends to the map of V(Y0) ®V(Yi)-+R
indicated already. Note that the mapping space construction here intervenes

to convert additive operations to multiplicative ones so that topological axioms
built on this model naturally seem to be multiplicative analogues of the usual

ones.

In the topoligical context X is usually taken to be an «-manifold of which Y0

and Y\ are typically two components of the boundary, and a complete axiom

system linking the number Z(X) with the vector spaces V(Y0) and V(Y\) is

discussed in the second chapter of this book. The reader might find it profitable

to check those axioms in the baby context of the present discussion.

The true aim of statistical mechanics, and to a large extent of quantum field

theory, is to deal with the behaviour of the lattice model as the lattice tends to

infinity. For instance, phase transitions are characterized by the fact that Z(T)

which is usually quite analytic in T for finite X, develops singularities with

the passage to oo.

In field theories the physicists often write down a "measure" on an infinite-

dimensional space—purely by analogy and "physical intuition." Thus the statis-

tical model which plays a central role in this volume is the Witten-Wes-Zumino

model whose partition function has the following form:

Z£{M) = f e2nikL^A)3fA
Jsf

with

L(A) = -Lr f Tr{A AdA + ^AAAAA).
on1 JM

Here M is a compact, 3-manifold and plays the role of the configuration

space. A "colouring" of M, for P = M xG is a choice of a fixed "connection"
A on the principal bundle P over M with structure group G. A is therefore

simply a Lie algebra valued 1-form on M. Thus Map(X, S) is here interpreted

by the set " s/ " of all such connections. The action of the colouring A is now

measured by the "Chern-Simons" Lagrangian L(A). Note here that because A

is a 1-form,  (A A dA + |A A A A A) is naturally a Lie algebra valued 3-form
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so that the integral is well defined on the compact 3-manifold. In the language

of physics L(A) is the Lagrangian of the theory and the corresponding integral
Z(M),

Z(M)= f e2nikL(A)3r(A)
Js/

is meant as a modern version of the Feynmann integral "over all paths". The

"temperature" of this theory is given by the parameter k .

Actually the form of this integral is a beautiful nonabelian generalization of

a formula going back to Dirac in the abelian case where G is the circle Sl, and

corresponds to the electromagnetic force. The difficulty of defining the infinite

dimensional integral ¡^ is compounded in these "gauge theories" by the fact

that properly speaking "colourings" A and Ag are to be considered equivalent

if they are related by a gauge transformation g, that is, if we can construct a
map g: M —» G, such that

A8 = gAg~l +g~ldg.

The expression L(A) is cunningly constructed so as to be "nearly" invariant

under such gauge transformations:

Indeed, if & = Map(M ; G) denotes this gauge group, then

L(A8) = L(A)

for g in the identity component of % of 2? and in general L{A8) - L(A)

is an integer counting the degree of g: M -* G relative to the 3-dimensional
generator of H3(G).

Hence it is only if k is an integer, that e2nikL^ can be thought of as a

function on sf /&, and it is only then that these formulae are expected to

make "real sense." This "quantization" of k is precisely Dirac's argument for

the quantization of electric charge: The infinite integral must make sense by
Physics, hence k is an integer.    Q.E.D!

In short, if we invoke Physics, at this stage of the game, the W-Z-W statistical

model should produce for every k e Z and compact group G, a numerical in-

variant Z^(M), of the 3-manifold M. And, indeed, in [7] Witten "computes"

this invariant for the 3-sphere S3 and the group G = SU(2) to be

z°<i3> = V&"(*T2)'

Even granting this formula the reader might now well ask what this result

has to do with knots, and the answer Witten produces is exceedingly appealing.

Namely, in statistical mechanics it is not only the partition function that counts.

Rather, the measure on Map(.Y, S) provides one with expectation values (f)

for functions over / on Map(^T, S). That is, we set

(f)= I     f(s)®(s)/Z(X).
Js#l&

And in this spirit the knot enters the picture in Witten's model via the functions

it naturally defines on our space sé f& .

Recall that sé was a space of connections on P over M. Given A, any

closed oriented curve k in M therefore gives rise to a holonomy element (gk)

in G which measure the effect of parallel transport "according to A " along k .
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Actually this element is well defined only modulo an inner automorphism

of G, so that to obtain a well-defined function on sá ¡^, Witten chooses an
auxiliary representation V of G, and defines

Xw(k) = Trace p(gk)

as the " W'-measure" of the holonomy determined by the oriented knot k . In
this way every pair (G, W) defines a numerical invariant on knots by its ex-

pectation value (Xw{k)} in the k-G theory, and Witten argues that these expec-

tation values are related to the values of the Jones and Alexander polynomials

at various roots of unity.
For instance, when G = SU(2) and W is the representation of "level k ,"

then according to Witten

(Xw(k)) = Vk(q),        q = e2*i'2+k,

and I hope that the urge of discovering what is behind this intriguing explicit

formula will propel the reader unhesitatingly to the bookstore for a copy of

Atiyah's, The geometry and physics of knots.
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