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One of the most important classes of objects in topology is the class of mani-

folds. These objects appear naturally in fields ranging from geometry and analy-

sis to physics and mathematical economics. The ubiquity of manifolds suggests

the importance of answering the most basic questions about them, namely, ex-

istence and uniqueness: For a given set of algebraic topological data, is there

a manifold realizing this data? If so, how many are there, and how can they

be classified? Much progress has been made on these questions. In dimen-

sions two and below, a complete classification of manifolds has been known

for many years. In dimensions three and higher, the situation is much more

complicated. One might expect manifold theory to become increasingly harder

with increasing dimension, but in fact, the history of manifold topology suggests

otherwise. In dimensions five and higher, there is enough room to prove several

powerful theorems (in particular, Smale's Ä-Cobordism Theorem [M] and the

Surgery Theorem [W]). As a result, the most basic questions about manifolds

in dimensions five and higher were largely reduced to (hard) algebraic topology

in the 1960s. Consequently, dimensions three and four have been the most

enigmatic. Although basic questions remain unanswered in dimension three,

much progress has been made, partly through the close connection with dimen-

sion two, where a simple classification exists. Dimension four, however, was

virtually impenetrable until the last decade, and even now it remains largely

mysterious.
To understand the state of research in dimension four, we must be aware of

a distinction that appears in high-dimensional theory. There are actually sev-

eral different settings for studying manifolds. We can consider our manifolds

to be purely topological, that is, certain topological spaces to be classified up

to homeomorphism. Alternatively, we may consider smooth manifolds, which

have been endowed with extra structure allowing us to do calculus. While topo-

logical manifolds may seem more fundamental to topologists, it is the smooth

manifolds that tend to appear in applications. The distinction between smooth

and topological manifolds turns out to be insignificant in dimensions three and

below. In higher dimensions, however, there are topological manifolds that are

unsmoothable and others that admit several nondiffeomorphic smooth struc-

tures. The study of the interplay between these two categories, or smoothing

theory, was developed for dimensions five and up in the late 1960s [KS]. The

final result is that in high dimensions the smooth and topological theories are

quite similar, and the relation between the two is determined by algebraic topol-

ogy.
The theory of 4-manifolds essentially began with two major breakthroughs

in the early 1980s. The first breakthrough was Freedman's work [F, FQ] in

the topological category. Freedman showed that topological 4-manifolds be-

have like their higher dimensional counterparts (at least, when the fundamen-
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tal group is not too large). In particular, for closed (i.e., compact and with-

out boundary), simply connected topological 4-manifolds, Freedman achieved
a complete classification in terms of the intersection form (or equivalently, cup

product pairing) in the middle dimension, and one other Z2 invariant. (This

is essentially the only algebraic data that a closed, simply connected 4-manifold

carries.) For all of its power and beauty, however, Freedman's work said noth-

ing about the smooth category, the world of geometry, analysis, and physics.

The breakthrough for smooth 4-manifolds came from Donaldson's revolution-

ary ideas from gauge theory. Donaldson's work reveals that smooth 4-manifolds

are much different from their high-dimensional counterparts. The main theo-

rems from high dimensions fail catastrophically in this setting. In particular,

when we compare with Freedman's work we find that smoothing theory in di-

mension four is radically different from the relatively manageable, algebraic

theory from high dimensions—indeed, it is much more complex. For example,

dimension four is the only dimension in which W admits exotic smooth struc-

tures (i.e., manifolds homeomorphic to W but not diffeomorphic to it). In fact,

more recent work of Taubes [T2] shows that there are uncountably many diffeo-

morphism types, and these can occur in continuous families—in stark contrast

to the discrete nature of high-dimensional smoothing theory (see also [G]).

Donaldson's ideas have led to a deluge of new theorems about smooth 4-

manifolds. His first theorem [Dl] asserted that if a smooth, closed, simply

connected 4-manifold has a definite intersection form, then the form must be

diagonalizable. Since there are many nondiagonalizable, definite forms over

the integers, and Freedman asserts that these are realized topologically, we ob-

tain many unsmoothable 4-manifolds, some of which "should" be smoothable

by the predictions of higher dimensional smoothing theory. The failure of the

smooth surgery theorem and the existence of exotic K4's are corollaries. Sub-

sequently, Fintushel and Stern greatly simplified Donaldson's proof [FS1] and

applied his methods to obtain information about the homology cobordism group

of homology 3-spheres [FS2]. (More recently, Furuta [Fu] has expanded this

work and showed that the group is not finitely generated.) Donaldson has also

constructed powerful new invariants for smooth 4-manifolds. Initially [D2],

he used these to distinguish two simply connected algebraic surfaces (smooth

4-manifolds) that were homeomorphic but not diffeomorphic. These "should"

have been diffeomorphic, by high-dimensional smoothing theory, and they pro-

vided a counterexample to the smooth /?-cobordism theorem. Subsequently,

Friedman and Morgan [FMI, FM2] used Donaldson's invariants to distinguish

infinite families of such homeomorphic (and A-cobordant) examples. This con-

trasts with high-dimensional smoothing theory, in which a compact manifold

admits only finitely many smooth structures. Various other questions about

simply connected algebraic surfaces have also fallen: Donaldson [D3] showed

that they cannot split as connected sums of manifolds with indefinite forms,

and simply connected 4-manifolds have been constructed that are irreducible

under connected sum but not diffeomorphic to algebraic surfaces [GM], The un-

derlying theme of all of these results is that the theory of smooth 4-manifolds

(even in the simply connected case) is much more complex than anyone had

realized, and this bountiful structure is likely to provide for active research for

years to come.

Donaldson's work centers on the moduli space JÍ of self-dual connections on
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a bundle over a 4-manifold M. These are solutions to a certain nonlinear partial

differential equation, which we briefly describe, although at the present level of
discourse the details are hardly necessary. We begin with a G-vector bundle

E over a Riemannian manifold M. In principle, G can be any compact Lie

group, but in practice it is usually SU(2) or 50(3). The set of G-connections

on E forms an affine space W . Each connection in W has a curvature form that

isa2-formon M with coefficients in the bundle qe of Lie algebras associated to

E by the adjoint action. The Hodge star operator provides an involution on the

space of 2-forms, and hence, on 2-forms with coefficients in gE . A connection

is called self-dual if its curvature lies in the fixed set of the star operator. Self-

dual connections are described by a first-order nonlinear equation. The set

of all self-dual connections in W is infinite dimensional because E admits a

large symmetry group that preserves self-duality. Specifically, if & denotes the

group of all G-bundle automorphisms (or gauge transformations) of E, then

?* acts on ^ and preserves self-duality. The quotient space W¡^ is (after a

suitable completion) a singular Hubert manifold with well-understood algebraic

topology. The moduli space JÍ c *&¡& is the quotient by & of the set of
self-dual connections. In this setting, the self-duality equation is essentially

elliptic, so after a suitable perturbation of the equation (or the metric on M

[FU]) JÍ becomes a finite-dimensional singular manifold. The singularities

are well understood. They come from singularities of fê¡&, which correspond

to reducible connections. In the situations we are considering, G = SU{2) or
SO{3), the singularities correspond to U(\) or SO(2) reductions, and each
will have a neighborhood in df that is a cone on a complex projective space.

We can now see how Donaldson's machinery works. To prove his first theo-

rem, Donaldson began with a hypothetical 4-manifold with a nondiagonalizable

intersection form. He studied the moduli space A* associated to the simplest

nontrivial SU{2) bundle over M. This turned out to be a singular 5-manifold.

A* was not compact, but by using some sophisticated analysis of Taubes [TI],

Donaldson showed the end of ^# was collared by M x R, so Af could be

compactified by adding a copy of the original manifold M. He then deleted

the singularities to obtain a compact, oriented 5-manifold A! bounded by M

and some number of copies of <CP2 . The number was determined by the inter-

section form of M, and simple arithmetic showed that the boundary of A! had

nonzero signature. Since any 4-manifold that bounds an oriented 5-manifold

must have signature zero, this gave the required contradiction.

The method of Fintushel and Stern also involved cobordism, but the details

were much simpler. In place of an SU(2) bundle, Fintushel and Stern used

an 50(3) bundle. They chose their bundle so that A? was compact. This

avoided the hard analysis of the Collar Theorem. After deleting the reducible

connections, they obtained a compact manifold Af, whose boundary was an

odd number of copies of complex projective space. This led to a contradic-

tion without any discussion of orientability of Ai. (In the simplest case, A!

was a compact one-manifold bounded by an odd number of points—clearly an

impossible object.)
Donaldson's invariants can also be seen in our description of -# c <&¡&.

Ignoring the myriad technical details (such as the fact that A/ is frequently

noncompact), we may think of A as representing a homology class in <ë ¡"g .
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(More precisely, if the intersection form of M is indefinite, we obtain a class in

W*/3?, the nonsingular Hilbert manifold consisting of the complement of the

reducible connections in të/S? .) Under suitable algebraic hypotheses this idea

can be made precise, and the homology class can be shown to be independent

of the metric on M. Since the ambient space has large (and well-understood)

homology, we obtain a large family of diffeomorphism invariants (depending on

our choices of G and E). Various methods have been developed for computing

these invariants (e.g., [D2, D3, FMI, FM2, GM]), resulting in a plethora of

spectacular theorems about smooth 4-manifolds.

Connections, definite forms and four-manifolds, by Pétrie and Randall, pro-
vides a (relatively) elementary introduction to Donaldson theory. The book cen-

ters on gauge theory with SO( 3)-connections and provides a good exposition of

Donaldson's first theorem from the Fintushel-Stern viewpoint. This is followed

by a brief exposition of Z„-equivariant gauge theory and the Fintushel-Stern

work on cobordism of homology 3-spheres. Since there are already references

for Donaldson's first theorem from his original SU(2) viewpoint [FU, L], the

main advantage of this new book lies in its relative simplicity. By working with

50(3), the authors have avoided dealing with the Collar Theorem, thereby

eliminating much difficult analysis. The discussion of orientability has been

bypassed, and even the delicate question of existence of self-dual connections

has been finessed by the Fintushel-Stern approach of building the bundle E so

that it explicitly admits a self-dual 50(2)-connection. The book also includes

much more elementary background material than previous references, which is

an important advantage in a field such as this that depends on a wide range of

mathematics. Altogether, this is perhaps the best textbook currently available

for a one-semester graduate course introducing Donaldson theory. The principal

drawback of the book is that it makes virtually no mention of recent develop-

ments such as Donaldson's invariants and their applications. (This seems to be

the inevitable consequence of dealing with an area that continues to grow explo-

sively). On the other hand, any reasonable treatment of Donaldson's invariants

would require the introduction of much additional machinery, so perhaps this is

best left to more advanced books. In any case, more comprehensive references

exist, notably [DK].
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The publication of this book was an event long awaited by specialists. The al-

gebraic compactification of the moduli of principally polarized abelian varieties

is the culmination of a long and fruitful line of research in algebraic geometry.

Before turning to the contribution of the book proper, we will summarize some
of the principal events in the history of the subject.

Abelian varieties begin with elliptic curves. An elliptic curve over an alge-

braically closed field k is determined, up to nonunique isomorphism, by its

y'-invariant, which can be an arbitrary element of k. One says that the affine

line over Z, with coordinate j, is a moduli variety for elliptic curves: the word

"moduli" here means that j is a parameter. This moduli variety has a natural

compactification: the projective line over Z. As j tends to infinity, the corre-

sponding elliptic curve degenerates to a singular cubic. Among singular cubics,

the least degenerate are those with an ordinary double point. It is therefore nat-

ural to complete the modular picture by making the singular cubics correspond

to the exceptional value j = oo. We will come back to this problem further

on. For the moment, let us say that the contribution of Chai and Faltings is to

extend this type of construction to higher dimensional abelian varieties.


