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The publication of this book was an event long awaited by specialists. The al-

gebraic compactification of the moduli of principally polarized abelian varieties

is the culmination of a long and fruitful line of research in algebraic geometry.

Before turning to the contribution of the book proper, we will summarize some
of the principal events in the history of the subject.

Abelian varieties begin with elliptic curves. An elliptic curve over an alge-

braically closed field k is determined, up to nonunique isomorphism, by its

y'-invariant, which can be an arbitrary element of k. One says that the affine

line over Z, with coordinate j, is a moduli variety for elliptic curves: the word

"moduli" here means that j is a parameter. This moduli variety has a natural

compactification: the projective line over Z. As j tends to infinity, the corre-

sponding elliptic curve degenerates to a singular cubic. Among singular cubics,

the least degenerate are those with an ordinary double point. It is therefore nat-

ural to complete the modular picture by making the singular cubics correspond

to the exceptional value j = oo. We will come back to this problem further

on. For the moment, let us say that the contribution of Chai and Faltings is to

extend this type of construction to higher dimensional abelian varieties.
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Abelian varieties of arbitrary dimension g were initially studied over the

complex field. They may be realized as quotients V/A, where A « Z2g is a

lattice in the complex vector space V . The quotient V/A is a priori a compact

complex torus; it is algebraic (i.e., an abelian variety) if and only if there exists a

positive hermitian nondegenerate form on V whose imaginary part takes inte-

gral values on A. (Such a form gives a polarization of V/A.) This description

of abelian varieties leads to a transcendental construction of the moduli variety

for principal polarized abelian varieties of dimension g over C as the quo-

tient of the Siegel space Sg by the action of the symplectic group Sp(2g, Z).

This quotient has a natural algebraic compactification: the projective variety

associated with the graded ring of Siegel modular forms [3]. The compactifica-

tion obtained in this manner is minimal in the language of Chai and Faltings.

The set of points at infinity can be stratified, with each stratum representing

the space of principally polarized abelian varieties of a given dimension < g .

One of the goals of Chai-Faltings is to extend this compactification, which is

essentially transcendental, into an algebraic construction over Z.

To construct algebraically a modular variety for principally polarized abelian

varieties, one can no longer rely on complex uniformization and periods. On

the other hand, we can use the polarization to embed the abelian varieties into

a projective space and use a suitable Hubert scheme H to parametrize the

resulting subvarieties.

Before saying more about this construction, we should explain why one works

with polarized abelian varieties, rather than abelian varieties with no additional

structure. The necessity of including a polarization is hidden in the case of

elliptic curves (which are canonically polarized), but appears clearly for abelian

varieties of dimension two or higher. Indeed, to ensure that the Hubert scheme

H is of finite type, we must bound the degree of the polarization; further, the

group of automorphisms of a polarized abelian variety is finite, whereas the

group of automorphisms of an abelian variety can be infinite. As we will see

below, the presence of automorphisms is a great bother when we treat moduli

questions.

Returning to the algebraic construction, we note that the desired modular

variety appears as a quotient of H by the group of automorphisms of the

ambient projective space. The construction of quotients in algebraic geometry

had long been an obstacle. However, Mumford's study of Geometric Invariant

Theory [7] provides useful sufficient conditions (involving the crucial notion

of "stability") for the construction of the quotient of a variety by an action

of a reductive algebraic group. Mumford's theory was initially valid only in

characteristic zero, since it relied on the semisimplicity of representations of

reductive groups, but the theory was extended 10 years later through the work

of Haboush. In any case, via a detailed direct study, Mumford was able to

construct quasi-projective modular varieties over Z corresponding to the fol-

lowing two related moduli problems: the classification of abelian varieties of

dimension g, furnished with a polarization of degree d, and the classification

of smooth projective connected curves of genus g.

An alternative construction of the modular variety was proposed by Mumford

[8] soon after his work on Geometric Invariant Theory. This second construc-
tion is based on theta functions, which appear classically (over C ) when one
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writes equations for ample divisors on an abelian variety, working in the univer-

sal covering space of the abelian variety. The theory of "theta-null Werte" per-
mits one to find modular parameters for the abelian variety. Mumford showed

that the essential information carried by the theta functions may be read from
the restrictions of these functions to 2-power division points of the abelian va-

riety. This observation leads to an algebraic approach to theta functions, valid
in characteristic ^ 2. One emerges with a second construction of modular va-

rieties and their minimal compactifications. Thus, already in 1967 one had a
satisfactory theory of moduli, at least in characteristic different from 2.

These modular varieties are "coarse moduli schemes." In other words, they

are schemes whose points with values in every algebraically closed field k clas-

sify, up to isomorphism, the objects being studied over k. The "coarse moduli"

viewpoint is relatively imprecise, in comparison with the much richer notion

of "fine moduli." For this, one defines for each scheme 5 the set F (S) of

objects to be classified over 5. In addition, for each morphism of schemes

u: S' —> 5 one provides a base-change map u*\ F{S) —> F(S'). This gives a

functor F : Sch —► Sets. One says that M is a fine modular scheme for F if M
represents the functor F . This means that M is given along with a "universal

object" Ç € F(M) such that, for each scheme 5 and each object a e F(S),

there exists a unique morphism u: S —> M such that a = u*(c¡). One then gets

an isomorphism of functors F « Hom(-, M).

Grothendieck revealed the utility and flexibility of working with representable

functors. In particular, one can give necessary and sufficient conditions on F

for M to be proper or smooth. Unfortunately, the functors encountered in

classifying abelian varieties are not necessarily representable. Specifically, fix

a positive integer g, and define F(S) to be the set of isomorphism classes

of principally polarized abelian schemes of dimension g over 5. Then F is
not representable; the difficulty arises from the fact that principally polarized

abelian schemes have nontrivial automorphisms. For example, take g = 1 . If

5 is a scheme in which 6 is invertible, the elliptic curves defined by the cubic

equations Y2Z = X3 + XZ2 and uY2Z = X3 + XZ2, with u an invertible

function on 5, have the same y-invariant but are isomorphic only if u is a

square. This circumstance can be traced to the nontrivial involution "multipli-

cation by — 1 " on elliptic curves. Supplementary difficulties appear near the

values j = 0 and /' = 1728 ; these are due to "extra" automorphisms at these

points. Nevertheless, the functor F defined above is "not far" from being rep-

resentable. It is interesting to recall the various ways in which its failure to be

representable has been circumvented.

Let A be an abelian scheme over 5, furnished with a principal polariza-

tion 6. Let n > 3 be an integer that is invertible on 5. Let „A be the

kernel of multiplication by n on A. Serre remarked that every automor-

phism of (A, 8) that acts trivially on „A is the identity. One can then define

over Z[\/n] the functor Fn that classifies principally polarized ^-dimensional

abelian schemes {A, 6), furnished with a trivialization of „A, i.e., with an iso-

morphism x: (Z/nZ)2g « „A . This latter functor is representable, by a scheme

we can call M„ . The forgetful operation {A N 6, x) >-> (A, 6) leads to a finite

morphism Mn —♦ M over Spec(Z[l/«]) that is ramified exactly at those points

of M that correspond to abelian varieties with exceptional automorphisms.
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A more local approach is to start with a polarized abelian variety (Ac,, do),
defined for instance over a sufficiently large finite extension k of its prime

field. The universal deformation of (Aq , 6q) is a polarized abelian scheme

(A, 8) over the spectrum 5 of a complete local ring with residue field k . The
action of the finite group G — Au\(Aq , 0O) lifts to an action of G on (A, 6) ;

further, there exists an action of G on 5 such that the projection A —> 5

is (j-equivariant. The quotient of 5 by G is, up to an étale extension, the

completion of the coarse moduli scheme M at the point of M that corresponds
to (Ao, 0O ) • The local obstructions to the representability of F can be read off

from the action of G on 5.

Inspired by the concept of Grothendieck topologies, Mumford introduced

the crucial notion of stack in 1963 (see [9]). Although the functor F is not

representable, it can be covered by étale families (A¡, 6¡) —» 5, which, at each

closed point of 5,, are algebraizations of universal deformations. Given two

such families (A¡, d¡) —> 5, ( / = 1, 2 ), one can compare them by introducing

the functor "Isom" of isomorphisms between these two objects. This functor

is representable by a scheme 5i 11 that lies above S\ x 52 in such a way that

the two projections 5i;2 —► 5, (i = 1, 2) are étale. The collection of the

5, and the S¡j give a description of F that is as flexible and workable as

that given by étale charts and coordinate changes in the case of a representable

functor. This presentation marked the beginning of the theory of algebraic

stacks, which permits a faithful description of moduli problems without any

loss of information or need for auxiliary rigidification.

It is impossible to speak of representability without discussing the work of

Artin. Artin's marvelous approximation theorem for solutions of algebraic equa-

tions over Hensel rings [1], obtained at the end of the 1960's, led him to intro-

duce the category of algebraic spaces, which appear as quotients of schemes by

étale equivalence relations. It turns out that the various necessary conditions

for representability in the category of schemes, discovered by Grothendieck,

remain necessary conditions in the category of algebraic spaces. Further, these

conditions, taken together, are sufficient for representability in this latter cat-

egory. This beautiful fact provided a response of unanticipated simplicity to

representability questions with which algebraic geometers had struggled for over

ten years.

Let us return to the moduli problems, or rather to the algebraic stacks over Z,

of genus g curves and principally polarized abelian varieties. These stacks are

not proper over Z, and the problem is to compactify them by defining suitable

proper stacks over Z with reasonable geometric descriptions.

This work was carried out for curves by Deligne and Mumford in 1969 [5].

In this case, it "suffices" to compactify families of smooth curves of genus g by

adjoining families of semistable curves of genus g whose only singularities are

ordinary double points and which are minimal in a simple combinatorial sense.

One obtains a proper stack over Z that furnishes a canonical compactification

of the stack of smooth curves. Because of the valuative criterion for properness,

the properness of the compactified stack comes down to the following concrete

fact, which is quite remarkable: If R is a complete valuation ring, with fraction

field K, and if Xg is a smooth proper curve over K, of genus g > 2, then

after a possible finite extension of R, XK prolongs to a proper semistable

curve over R, in an essentially unique way.   Although geometers had long
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been familiar with the singular specializations of smooth curves, they had never

suspected that such a simple fact could be true.

When R has residue characteristic zero, the statement about Xk can be

obtained by starting with a regular model with normal crossings and then elim-

inating the multiplicities of the components of the special fiber by replacing R

by a finite extension. Historically, however, things worked differently. In the fall

of 1964, Grothendieck studied the monodromy of Xk over R via the theory

of vanishing cycles that he had just elaborated. He proved that after a possi-

ble replacement of R by a finite extension, the specialization of the Jacobian

of Xk becomes an extension of an abelian variety by a torus (see [6, Exposé

I, §3]). Roughly at the same time, Mumford obtained a similar result using

theta functions, at least in residue characteristic different from 2 (cf. [4]). The

translation of this result to the reduction of curves came only later. Nowadays

we have a few different proofs of the semistable reduction theorem for curves;

none, though, is truly elementary in the case where the residue characteristic

of R is positive.
Let us turn now to the compactification of the stack M of principally po-

larized abelian varieties of dimension g. In contrast with the case of curves,

there seems to be no natural geometric compactification of M.

If one adopts the viewpoint of group schemes, it is quite clear what sort of

degenerations of abelian schemes we should allow at infinity: one should con-

sider semiabelian schemes, i.e., smooth group schemes of dimension g whose

fibers are extensions of abelian schemes by tori. This means that the objects that

we wish to parametrize are no longer themselves proper, and this is a source of

considerable technical difficulties.

How can we classify such objects in the neighborhood of a degenerate fiber?

Täte was the first to study the case of an elliptic curve Er , defined over the

fraction field of a discrete valuation ring R as above. Assuming that the special

fiber of Ek is a multiplicative group, Täte showed that E% can be constructed

as a quotient of the multiplicative group over AT by a group of periods. This

multiplicative uniformization is analytic, rather than algebraic, and must be

interpreted in the context of rigid analytic spaces, which Täte discovered at this

time.

To understand the resulting compactification of the modular variety

Spec Z[j], we must adapt Tate's construction to a "universal" situation where R

is replaced by the power series ring Z[[q]]. One can "divide" the multiplicative

group Gm by the powers of q, thereby obtaining a semiabelian scheme that

degenerates to the multiplicative group when q = 0 and, away from 0, is the

elliptic curve with y'-invariant l/<7 + 744+196884<H-  (see [10]). We obtain
in this way a formal chart in a neighborhood of infinity of the compactification

of the moduli of elliptic curves. This formal chart can be made algebraic in the

following sense: one can find a semiabelian scheme defined over a neighbor-

hood of j = oo in the projective line over Z, which becomes Tate's degenerate

elliptic curve after completion at oo. This is roughly the idea that Chai and

Faltings generalize in higher dimension.

The first step in the process is to describe carefully the local structure of

semiabelian schemes in the neighborhood of a degenerate fiber. If A is a

semiabelian scheme over 5, there is a closed subset 5n of 5 over which the

toric part of each fiber of A has maximal dimension. Assume that 5 is affine
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normal, integral with fraction field K, and complete along So ■ Then A can

be partially uniformized in the Täte sense. More precisely, there exists over 5

a canonical extension E of an abelian scheme B by a torus T, such that A

is the quotient of E by a period lattice A. The polarization on A gives sup-

plementary structure; in the simplest case where B = 0, this is a Af-valued

quadratic form on the character group of T that satisfies a positivity condition

relative to the ideal defining 5o .

To realize A as a quotient of E by A, it is apparently necessary to move

beyond the techniques of rigid geometry. The authors adopt the method given
by Mumford in the case B = 0 (in an article that is reproduced as an appendix

to the book); this method leads to an economical construction of A that de-

pends on theorems of algebraization of Grothendieck's formal schemes. The
uniformization of A provides control of the parameters that describe A in the

neighborhood of its degeneration along 5o : these are the parameters of B, the

class of the extension E, and the group of periods A.

The next step consists in constructing a system of locally universal charts

in a neighborhood of infinity. This step depends on the theory of toroidal

varieties that was developed in the early 1970s and used by Mumford and his

students to obtain compactifications of symmetric domains over C [2]. The

construction depends on a supplementary choice: a simplicial decomposition

of the cone of positive Q-valued quadratic forms on Z8 that is invariant under

the action of GL(g, Z) and finite modulo this action. (The existence of such

a decomposition may be viewed as a vast elaboration of Minkowski reduction

theory.) To each cell of the decomposition corresponds a certain formal chart

that is furnished with a semiabelian scheme that is universal for the periods

parameterized by the chart. The authors use Artin's approximation theorem to

approximate these formal charts by algebraic charts, which become the étale

charts for the compactified stack. This use of the Artin approximation theorem

is certainly one of the key points that had blocked the (few) previous workers

in the subject.

Although the compactified stack depends on the choice of a simplicial de-

composition, any two decompositions can be refined simultaneously by a third.

As a result, one ends up with a projective system of compactifications. The

stacks that are constructed are smooth (because the polarizations are principal),

and the locus at infinity is a divisor with normal crossings (relative to Z). In

particular, the structures obtained are "uniform" with respect to the character-

istic.

Over the stacks constructed by the authors, there is an invertible sheaf co : the

dual of the highest exterior power of the Lie algebra of the universal semiabelian

scheme. The authors show that a positive power of a> is generated by its

global sections and thereby obtain by contraction (or blowing down) the sought-

after canonical minimal compactification over Z. The latter chapters of the

book contain complements that concern modular forms, p-divisible groups,

and heights.
This book of over three hundred pages makes no concession to the reader

and is not easy to penetrate. It was imperative that a book on this fundamental

subject be available quickly, and the mathematical community is deeply in-

debted to the authors for completing their project in a timely manner. Thanks

are also due to the authors and to Springer-Verlag for publishing the book at a
reasonable price.
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Algebraic ideas in ergodic theory, by Klaus Schmidt.   Amer.    Math.    Soc,

Providence, RI, 1990, 94 pp., $30.00. ISBN 0-8218-0727-7

This short book divides into two parts that deal with somewhat different

topics. A general description is given in the following excerpt from the author's

introduction:

... The first of these topics is the influence of operator algebras
on dynamics. The construction of factors from group actions on

measure spaces introduced by F. J. Murray and J. von Neumann

in the 1930s has, in turn, influenced ergodic theory by leading to

H. A. Dye's notion of orbit equivalence, G. W. Mackey's study

of virtual groups, and the investigation of ergodic and topolog-

ical equivalence relations by W. Krieger, J. Feldman and C. C.

Moore, A. Connes, and many others. The theory of operator

algebras not only motivated the study of equivalence relations

(or orbit structures), but it also provided some of the key ideas


