
BOOK REVIEWS 191

with operator algebras and measured equivalence relations, but it is valuable to

have them spelled out for a larger audience.

3. The study of multidimensional Markov shifts, while still at an early stage,

is bound to grow in importance, partly because of links with other active areas

(sample buzzwords: tiling, percolation). The examples in the last three chapters,

especially in chapter 5, give a wonderfully interesting first view of the subject.

My one complaint about the book is that the system of cross-referencing is

unnecessarily confusing; for example, "(1.5)" has more than one meaning.

J. Feldman

University of California, Berkeley
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In his comprehensive historical study [ 10] Kline wrote:

Though determinants and matrices received a great deal of at-

tention in the nineteenth century and thousands of papers were

written on these subjects, they do not constitute great inno-

vations in mathematics... Neither determinants nor matrices

have influenced deeply the course of mathematics despite their

utility as compact expressions and despite the suggestiveness of

matrices as concrete groups for the discernment of general the-

orems of group theory...

Despite these sentiments, doubtlessly shared by a substantial part of the mathe-

matical public, interesting, difficult, and important work on matrix theory con-

tinues to appear at an accelerating pace. As evidence of this, within the last

year or so, Brualdi and Ryser published Combinatorial matrix theory [5], Ab-

stract linear algebra by Curtis was posthumously published [6], and the second

volume of the Horn and Johnson work (H & J), the subject of this review, made

its long awaited appearance.

The book literature in matrix theory exploded in the sixties and early seven-

ties with literally dozens of rather pedestrian efforts. This deluge occurred partly

in response to NSF educational initiatives that dictated a new undergraduate

curriculum in which "linear algebra" and "finite math" were to be introduced

at the earliest possible moment. As might have been predicted, the logical out-
come in the eighties was the inclusion of elementary matrix theory in ponderous

calculus books already too heavy to lift unaided. Nonetheless, significant books

on matrices and their mathematical applications have appeared irregularly over

the last fifty years. Bourbaki's Algebra [4] commits 476 pages to linear and mul-

tilinear algebra, albeit at a predictably rarefied level. Even so, Bourbaki devotes

space to some very old fashioned (and hard) matrix/determinant problems; e.g.,

the evaluation of the Cauchy determinant det(a, + bj)~l ; the Sylvester-Franke
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theorem, conditions for a p-vector to be pure (i.e., decomposable) in f\p V,

the pth exterior space over V .
Bourbaki does not share the views expressed in the Kline quotation (from [4,

p. 655]):

Linear algebra is both one of the oldest and one of the newest

branches of mathematics. On the other hand, at the origins

of mathematics are the problems which are solved by a single

multiplication or division, that is by calculating a value of a

function f(x) = ax, or by solving an equation ax = b: these

are typical problems of linear algebra and it is impossible to

deal with them, indeed even to pose them correctly, without

"thinking linearly."

On the other hand, not only these questions but almost ev-

erything concerning equations of the first degree had long been

relegated to elementary teaching, when the modern development

of the notions of field, ring, topological vector space, etc. came

to isolate and emphasize the essential notions of linear alge-

bra (for example duality); then the essentially linear character

of almost the whole of modern mathematics was perceived, of

which "linearization" is itself one of the distinguishing traits,

and linear algebra was given the place it merits.

Thirty one years ago Richard Bellman wrote Introduction to Matrix Analysis

[3], which more or less defined the term "matrix analysis." It is interesting to

compare the contents of [3] and H & J. The two books have chapters on func-

tions of matrices, stability and the Lyapunov theory, eigenvalue inequalities

and Kronecker products. If the H & J predecessor volume [9] is included then

[3] and H & J share additional chapters on hermitian matrices and matrices

with nonnegative entries. Both Bellman and H & J define matrix analysis as

those parts of linear algebra that either use or address problems in mathemat-

ical analysis. Of course, this definition is a bit fuzzy and does not take into

account items such as the proof, using compound matrices, of the famous Weyl

majorization inequalities relating eigenvalues kj and singular values a, of an

n-square nonsingular A [11]

k k

(1) £ log |A,|<£ log|a,|,     k = \,...,n

with equality for k-n, \k¡\ > \kj+\ \, and a¡ > aj+i . In fact, the equivalent

k k

ni^i^ria>'   k=\,...,n
j=\    j=\

appears as an exercise in [1] where it is credited to E. T. Browne in a paper
published in 1928.

The first chapter in H & J is entitled "The field of values," also called the

"numerical range," and is denoted by W(A). This set is the image in C of the

surface of the unit sphere in C" under the mapping x —► x* Ax . It is obvious

that W(A) is compact. What is considerably less obvious is the fact that W(A)
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is also convex, the content of the famous Toeplitz-Hausdorff theorem. The

standard proof shows that W(A) is convex for any 2x2 matrix A and then

reduces the general n x n case to n = 2. In a book important to the matrix

crowd, Halmos [7] wrote of the Toeplitz-Hausdorff theorem:

Every known proof is computational... A conceptual proof

would be desirable even (or especially?) if the concepts it uses

are less elementary than the ones in a computational proof.

Since 1967, a number of proofs have appeared, some of which purport to satisfy

Halmos's request. Whether they do or do not is disputable. In any event, the

numerical range has been generalized in several ways, e.g.,

Wm{A) = {det(X*AX)\det(X*X) = 1}

where A is nxn,X is nxm, and m < n. Clearly W\{A) = W{A) is convex,

but Wi(A) is not convex (try A = diag(l, 1, /, /)). Nevertheless, Wm{A) does

have some interesting properties. For example: it contains all possible products

taken m at a time of the eigenvalues of A ; the variable matrix X can be

restricted to partial isometries (X*X = Im) without altering Wm(A). In the

88 pages that H & J devote to the field of values, some of these generalizations

and their present status are discussed.

Every engineering student learns early in his training that the behavior of

solutions to the linear system of ordinary differential equations x = Ax + b(t)

depends on the distribution of the eigenvalues of A. Nonlinear systems x =

f(x, t) can frequently be studied by expanding / in a Taylor series about

a singular point Xo, discarding the nonlinear terms in x, and examining the

resulting linear system in which the coefficient matrix A is a Jacobian matrix.

The entire apparatus of inertia and Lyapunov stability was created in order to

find computationally feasible methods for deciding about the location cf the

eigenvalues of a general complex matrix. The original Lyapunov theorem is

given a careful proof in Chapter 2 of H & J. It is an important result because

it reduces the unpleasant issue of estimating eigenvalues to the more tractable

problem of solving a linear matrix equation. There are interesting treatments in

this chapter of classes of stable matrices, the M-matrices and P-matrices, and

the extent to which such classical inequalities as the Fischer inequality apply to
them.

The third chapter of H & J is entitled "Singular value inequalities" and it is

filled with interesting results relating norms, majorization, unitary invariance,

eigenvalues, and singular values. The authors quite rightly identify K. Fan,

A. Horn, G. Pólya, and H. Weyl as originators of the principal results in this

highly important area of matrix analysis. To give some of the flavor of this work,

consider a normal matrix A with eigenvalues k\, ... , kn and corresponding

orthonormal (o.n.) eigenvectors u¡, ... ,u„ . Let X\, ... , x^ be any k o.n.

vectors with x¡í+\,... , xn a completion to an o.n. basis. It is simple to confirm

that the matrix Sjtt = [\u*Xj\2] is doubly stochastic and that

Xj AXj = b(j)k,        j = 1, ... , k ,

where Stn is the 7th row of S and k is the column «-tuple of eigenvalues of
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A. Thus

k k

(2) 5>;^ = £s,a.
j=\ y=l

BirkhofFs theorem in [11] implies that S is in the convex hull of the set of

«-square permutation matrices Pa and hence £/_i S(j)k is in the convex hull

of the «! numbers ka^)-\-1- ka^ , in which a runs over S„ , the symmetric

group of degree « . In Fan's 1949 result [11], A is hermitian and thus from

(2) one can conclude that

k

(3) minACT(1) + • • • + ka{k) < V]x]Ax¡ < maxka(X) + ■■■+ ka(k).
a€Sn 7—7 o*€5/i

7=1

Fan's inequality (3) was the starting point of subsequent variational character-

izations of singular values that has resulted in a vast literature on this subject

over the last forty years. An excellent exposition of this theory may also be

found in a recent book by Amir-Moéz [2].

If f/i, l72 , V\, and V2 are vector spaces over a common field and T¡ : U¡ -*

Vi, i = 1, 2, are linear then T\ <g> T2 : U\ <8> c72 -*■ Vi <g> V¿, the tensor product
of Ti and T2 , is the linear map that satisfies

Ti <g> T-ïUi ®U2-TiUi® T2U2

for all Ui € Ui, i — 1,2. With natural choices of bases, the matrix representa-

tion of Ti ®Ti is a Kronecker product of matrices A® B . Since the space of

mxn matrices can be regarded as a tensor product of two spaces of tuples, it eas-
ily follows that the linear map X —► AXB has a matrix representation BT®A.

In Chapter 4 of H & J, "Matrix equations and the Kronecker product," it is

shown how these simple observations have been profitably applied to study the

Lyapunov mapping X —► XA+A*X, the commutator mapping X —► AX-XA ,

and general matrix equations AX + XB = C. As H & J observe, there has been

much work done to characterize linear mappings on matrix spaces that preserve

a stipulated property. This "linear preserver"problem frequently has the follow-

ing general form: Let T be a linear transformation defined on a vector space

V. Let U be some subset of V. What are necessary and sufficient conditions

(n.a.s.c.) on T such that U is preserved, i.e., T(U) c £/? Sometimes this

problem is stated in terms of an invariant / defined on U ; that is, what are

n.a.s.c. on T such that for each u e U, f(Tu) = f{u) ?

This invariance problem has been of interest to mathematicians since the

last century, and there is vast literature on the subject. In fact, it is difficult

to limit sensibly the extent of a comprehensive bibliography. Stephen Pierce at

San Diego State University is assembling such a bibliography in connection with

the forthcoming publication of an extensive survey on linear preservers in the

journal Linear and Multilinear Algebra. In many cases the invariance problem

specializes to V = MmiH(F). In other words, it is required to determine n.a.s.c.

on a linear T,

T:Mm¡n(F)^Mm,n(F),

such that T(U) c U for some appropriate set U , or possibly f(T(A)) = f(A)

for all A e U.   For example, take  V = iV/m,„(C) and  U to be the set of
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partial isometries, i.e., determine T such that whenever A*A = /„ it follows

that T(A)*T(A) — I„ . Frequently such problems can be reduced to the study

of those T that preserve rank, i.e., U = Rk is the totality of matrices of rank

k:
rank,4 = rV   implies    rank T(A) = k.

In turn, this question leads to a study of the structure of subspaces of Mm,n(F)

whose nonzero elements are all of rank k . R. Westwick and H. Flanders, among

many others, have done work on this question. There are several connections

of the invariance problem with Kronecker products but probably the simplest

can be described as follows. As noted earlier, the space of matrices Mm,n(F)

is a tensor product

Mm,H(F) = Ml>m(F)®MUn(F)

in which the tensor map is the dyad map x <g> y — xTy. It is not difficult to

confirm that A has rank k iff

k

(4) A = ̂ 2 xt ® y,
í=i

in which Xi,... , Xk as well as y\, ... ,yk are linearly independent. Thus a

linear T preserves rank A; iff T sends every tensor Y^t=\xt®yt of irreducible

length k into another tensor of irreducible length k . A representation such as

(4) is said to have irreducible length A: if A: is minimal over all possible such

representations.

Finally, it is important to mention that there is a considerable amount of

current activity related to the isometry-preserver problem mentioned above.

This issue is: characterize those linear T,

T:MmtH(C)^Mm,„(C),

that preserve various functions of the singular values.

The concept of the Hadamard product of two conformai matrices has been

in the literature beginning with the memorable 1911 paper by Schur [12]. In

that paper Schur proved that the entrywise product (Hadamard product) A • B

of two positive definite «-square hermitian matrices is also positive definite.

Actually, A • B is a principal submatrix of the Kronecker product A®B, from

which the positive definite property immediately follows. Apparently, the name

"Hadamard product" is due to J. von Neumann who used it in his lectures at

the Institute for Advanced Study in the early 1940s. In a recent paper [8], Horn

wrote

von Neumann's usage may have been the result of the long-

lasting influence of a famous 1899 paper in which Hadamard

studied two Maclaurin series f(z) = J2 anzn and g(z) = J2b„zn

with positive radii of convergence and their composition h(z) —

Y^O-nbnzn , obtained as a coefficient-wise product. He showed

that the function «(•) can be obtained from /(•) and g(-) by

an integral convolution, and he proved that any singularity zx

of «(•) must be of the form z\ = z2zt,, where z2 and z3

are singularities of /(•) and g(-), respectively. Even though

Hadamard never mentioned entry-wise products of matrices in
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this paper, the importance of his product theorem for power

series and his mathematical eminence (he had proved the Prime
Number Theorem in 1896) gave analysts a reason to associate

Hadamard's name with term-by-term products of all kinds.

Probably the most recent expository material on the Hadamard product ap-

pears in Chapter 5 of H & J and in [9]. The authors exhibit various analytical

contexts in which the Hadamard product arises. For example, consider the

integral operator

(5) K(f)= [ K(x,y)f(y)dy.
Ja

If the kernel K(x, y)  is replaced by the pointwise product of two kernels,

K(x, y)H(x, y), then (5) becomes

(6) L(f)= f K(x,y)H(x,y)f(y)dy.
Ja

In (6) the linear map / —> L(f) can be viewed as a limit of matrix-vector

multiplications. If K(x, y) and H(x, y) are continuous positive semidefinite

kernels in the sense that

(K(f),f)= [   j K(x,y)f(x)f{y~)dxdy>0,
Ja   Ja

then Schur's result implies that L is also positive semidefinite.

There are some quite unexpected consequences of a few simple (and nonob-

vious) observations about the Hadamard product. For example, if

B = Adiag(kl,...,k„)A-1

then

(7) dB = A-{A~x)Tk

in which dß is the «-tuple of main diagonal entries of B and k — {k\, ... , kn)T .

If B is normal, so that A can be taken to be unitary, then (7) shows that

dß = Sk where S = A • A is doubly stochastic. As we saw before, this rela-

tion leads immediately to the important majorization inequalities of K. Fan,

G. Pólya, A. Horn, and H. Weyl.
The final chapter, "Matrices and functions," is 178 pages in length and is

frequently very heavy going indeed. Things start out innocuously enough with

the standard results about scalar polynomials in a square matrix. The Cayley-

Hamilton theorem implies that any scalar polynomial f(A) in an «-square

matrix A can be expressed in terms of a polynomial p of degree less than « .

The problem of finding p is, as the authors observe,

... a special case of an interpolation problem that arises again

so it is worthwhile to examine it carefully.

They then launch into a full scale presentation of the Lagrange-Hermite in-

terpolation problem, the Newton divided difference formulas, and their rep-

resentation using the Cauchy integral theorem. Under certain circumstances,

a nonpolynomial function /, defined on a domain D c C that includes the
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eigenvalues of A , can be used to define a matrix function f(A). If (k - a)ß is

the highest degree elementary divisor of kl — A involving a then the deriva-

tives f^\a), j = 0, ... , ß - 1 must exist. If these conditions obtain for all

eigenvalues a then a coherent definition of f(A) can be made that is inde-

pendent of the similarity that brings A to Jordan normal form. The latter

part of this chapter is devoted to the chain rule for differentiating a matrix

function. For example, if A and B are positive definite Hermitian, how is

(d/dt)(tA + (1 - t)B)xl2 effectively evaluated for 0 < / < 1 ? The book ends
with an outline of the Loewner theory of monotone matrix functions.

There is no doubt that this two volume work, Matrix Analysis and Topics in

Matrix Analysis, is an important and unique contribution to the contemporary

book literature on matrix theory. The authors unify and organize an exten-

sive research literature that has developed since the end of World War II. The

mathematics in H & J is typical of this field in being difficult and very specific.

As such, it requires considerable concentration from the reader. It has been

observed elsewhere that matrix analysis is not a spectator sport. Certainly the

reader of this book will not go very far without tackling some of the nonrou-

tine problems posed at the end of every section. Mercifully, the authors have

included a (somewhat skimpy) "Hints" section at the end of the book.

In his preface to [3], Bellman listed what he called "the many fundamental

aspects of matrix theory" that were not discussed in his book. These were:

a computational treatment of matrices; the combinatorial theory of matrices,

topological aspects of matrix theory, group representations, ideal theory by way

of matrices due to Poincaré, and integer matrices. Finally, Bellman wrote:

On the distant horizon, we foresee a volume on the advanced

theory of matrix analysis. This would contain, among other re-

sults, various aspects of the theory of functions of matrices, the

Loewner theory, the Siegel theory of modular functions of ma-

trices, and the i?-matrices of Wigner. In the more general theory

of functionals of matrices, the Baker-Campbell-Hausdorff the-

ory leads to the study of product integrals. These theories have

assumed dominant roles in many parts of mathematical physics.

H & J meets some, but by no means all, of Bellman's specifications. There is

plenty of opportunity for the next generation to fill in the gaps.
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Discrete subgroups of semisimple Lie groups, by G. A. Margulis. Springer-Verlag,

New York, 1991, 387 pp., $85.00. ISBN 3-540-17179-X

The subject of this remarkable book is, as its title indicates, discrete subgroups

of semisimple Lie groups. Before describing these objects, it will be useful to

recall some basic ideas about Lie groups themselves.

Lie groups arise in a wide variety of situations in geometry and algebra. Be-

ing by definition those groups that admit a compatible manifold structure, they

arise in geometry as, roughly speaking, the finite-dimensional transformation

groups of manifolds or, somewhat more precisely, as the transformation groups

of manifolds that can be given locally by finitely many real parameters. While

the full diffeomorphism group of a manifold is too large to be finite dimen-

sional with respect to natural topologies, there are many situations where one

encounters subgroups that are finite-dimensional Lie groups. One of the most

important such geometric situations is that of the isometry group of a Rieman-

nian manifold. In this case it is a classical result of Myers and Steenrod that

the isometry group is always a Lie group. The same is true for the symmetry

group of certain other classes of geometric structures, e.g., pseudo-Riemannian

manifolds, and conformai structures in dimensions at least 3. While there are

many natural geometric structures for which the full symmetry group is not nec-

essarily finite dimensional (e.g., volume forms, symplectic structures, complex

structures) it is of interest in these cases to understand the finite-dimensional

symmetry groups and to understand conditions under which the full symmetry

group will be finite dimensional. In an algebraic setting Lie groups arise in a
similar manner. The general linear group of a real or complex finite-dimensional

vector space is a Lie group. (Of course one can consider this as simply a further

example of the symmetry group of a structure on a manifold, namely, a vector

space structure.) Closed subgroups will also be Lie groups and, in particular, a

subgroup that is the stablizer of any one of the natural objects associated to a

vector space will be a Lie group. For example, this is the case for the stabilizer

of a tensor, a subspace, a flag, etc. While it is not true that every Lie group

(even a connected one) is isomorphic to a linear group (i.e., a subgroup of some


