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In the theory of error-correcting codes a code C is a subset of Q" where Q

is a finite set called the alphabet. The elements of C are called codewords (or

vectors) and n is called the wordlength. In practice, the codewords are messages

that are sent over a so-called "noisy" channel to a receiver. The channel has the

effect that if a codeword c is sent, the received word r may differ from c in a

number of places. We say that errors occur in the received message. In the set

Q" a distance function is introduced by

d(x, y) := \{i : 1 < i < n, x¡ ¿ y¡}\.

The minimum distance d of the code C is defined by

d := min{d(\, y) : x e C, yeC, x^y}.

If d — 2e + 1, then the code C is called an e-error-correcting code because if

a received word r has distance < e to the transmitted message c, the receiver

can "correct" the errors and retrieve the word c, since the distance from r to
all other codewords is larger than e .

Shannon's paper (1948) on the mathematical theory of communication [8]

marks the beginning of coding theory. Since then, most of the theory has been

concerned with so-called linear codes. For the alphabet Q one chooses a finite

field ¥q and the code C is a linear subspace of F£ . If C has dimension k ,

then C is called an [n, k] code. The easiest situation is that of a systematic

code C, where the first k coordinates Ci , ... , cfc of codewords c take on
all qk possible values and the code is obtained by a mapping from F*j, to

F£ that adjoins "redundant" symbols ck+l, ... , cn . The efficiency of C for

transmission of information is measured by the ratio k/n , which is called the
information rate of C.

If C is a <7-ary [n, k] code with minimum distance d, then two distinct

codewords cannot be identical on the first n-(d -\) positions and, therefore,

the number of codewords cannot exceed q"-d+l . This yields what is known as
the Singleton bound

d<n-k+ 1.

If equality holds in this bound, then the code is called a maximum distance

separable code (MDS code). Here the word separable indicates that the code is

systematic on any k coordinate positions (trivially). For a linear code C, the
dual code CL is defined by

C±:={y€F9":Vx€C[(x,y) = 0]},

where (x, y) = Yü=\ x¡yi is the usual inner product. It is an easy exercise to

show that the dual of an MDS code is also an MDS code. This occurrence in

pairs of codes that are in some sense "good" is also a feature of the algebraic-
geometric codes treated in the book under review.
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If a code C in F£ has minimum distance d and if adjoining any word that

is not in the code to C results in a new code with smaller minimum distance,
then the following inequality is obvious:

¿=o w

This lower bound on the size of maximal codes is known as the Gilbert-

Varshamov bound. It was proved in the 1950s, the second author proving

the somewhat surprising fact that requiring C to be a linear code does not give
a smaller bound. For more than thirty years this elementary bound was not

improved. This explains that the paper [10] by Zink and the two authors of the

book under review, yielding a better lower bound by using deep results from

algebraic geometry, was a sensation for coding theorists. For this paper they
received the IEEE best paper award (1983).

To be able to appreciate the introduction of algebraic geometry into this

area of mathematics, we must first explain the structure of the class of codes

that is most widely used in practice. (Surely the most impressive example of

application of these codes is the compact disc; the incredible quality of the

sound would not be possible without coding theory. The reason why the codes

treated below are used, and not other "better" codes, is the fact that a very

fast algorithm for locating and correcting errors is known for these codes. The

mathematically fascinating codes from algebraic geometry are still quite far

from being useful in practice. Some readers may consider that an asset; chacun

son goût.) The codes are known as Reed-Solomon codes (RS codes).

Let the alphabet be F? = {qo, ... , aq-i) ■ Consider the fc-dimensional

vector space L of polynomials f{x) of degree < k in F?[x]. The code

C of length n = q is obtained by the linear mapping that sends f(x) to

(f(ao), ■■■ , /(<*?-1)) • Since a polynomial of degree / in ¥q[x] has at most /
zeros, the code C has minimum distance at least n — (k - 1 ). By the Singleton

bound, C must be an MDS code.
The fact that these codes are "best possible" in a sense and that they have a

fast decoding algorithm does not mean that the subject of coding theory ends
with these codes. The famous paper by Shannon, mentioned above, showed

that for channels with a probability p of a symbol being received as an error,

there is a corresponding information rate R(p), such that codes exist with rate

arbitrarily close to R(p), for which the probability of error after decoding is

arbitrarily small. In this theory, the alphabet is fixed and the codes (whose
existence is proved but we still are nowhere near constructing any) have very

large length n. The RS codes have length equal to the alphabet size, so they

may be good and, in fact, extremely useful but they have nothing to do with

"good" codes in the sense of Shannon. The codes constructed using algebraic

geometry do not achieve equality in the Singleton bound (they get close), but

they have the advantage that the length n can be very much larger than q.

A final step in introducing the algebraic-geometric codes is the following

geometric reformulation of the definition of RS codes. Let F be the algebraic
closure of ¥q and let X be the projective line over F. The rational points on

X are P, := (a,, 1), (0 < /' < q - 1) and Q := (1, 0). Let 3* be the space
of rational functions on X, with coefficients in ¥q , that are defined at all the
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points P¡ and that have a pole of order less than k in Q (possibly no pole) and,

furthermore, have no poles on X. We map S? to a g-ary code by letting the

rational function / e 3? correspond to the codeword (f(Po), ■■■ , f{Pq-\)).

Since F is closed, it is obvious that Jz? is simply the space L used in the

definition of RS codes, with the variable x replaced by x/y. In this way, a
vector space of rational functions defined on the projective line is mapped to

a linear code by taking values of the functions at a specified set of points of
the line to be the coordinates of the words. The set of rational functions was

defined by a restriction on the possible poles and their orders. The simplest way

of explaining what algebraic-geometry codes are is to replace X by some other

(nonsingular, smooth) projective curve. We will be more precise below. Similar

to the RS codes, the codes from algebraic geometry will occur in pairs (a code

and its dual).
The book by Tsfasman and VläduJ has two introductory chapters. The first of

these is an introduction to coding theory. This contains the necessary definitions

and some elementary theory, a number of examples of well-known codes, and

a section on bounds. Asymptotic bounds are treated thoroughly so that the

reader will be able to appreciate the improvement of the asymptotic Gilbert-

Varshamov bound given in Chapter 3. Instead of the standard terminology

of coding, q-ary [n, k, d] code, the authors prefer the concept of projective

[n, k, d]q system, a basisfree definition of an equivalence class of codes. This

makes the exposition more geometric. The second chapter contains the algebraic

geometry that is needed. This has algebraic curves, divisors and differential

forms, the Riemann-Roch theorem (the most essential tool; the proof is only

sketched) and the Hurwitz formula, rational points, elliptic curves, singular

curves, and a section on reductions and schemes.

In their little introductory book on codes and algebraic geometry, G. van

der Geer and the reviewer [6] observe that one can review basic notions from

algebraic geometry but that the reader, who really wishes to apply algebraic ge-

ometry to coding, must first work his way through a standard textbook. The

same holds for the present volume. The algebraic geometry used in the remain-

ing three chapters (i.e., the essential part) of the book is much too difficult for

a reader who is not already familiar with this area. Chapter 2 (163 pages) pro-

vides an excellent memory refresher for the reader, who has some knowledge

of the field. In the more precise definition of algebraic-geometric codes given

below we adopt the same point of view, i.e., we assume that the reader of this

review knows the concepts that are used (nonsingular curves, rational points,

divisors, differential forms). For a short introduction we refer to [5]. If D is

a divisor on a curve X, then we use the usual notation 3f(D) for the vector

space over the (specified) field K defined by

&{D) := {/ e K(X)* : (/) + D > 0} u {0},

where K(X) is the field of rational functions on X.

Similarly, the space of differentials co on X suchthat (œ)-D>0 is denoted
by Q(Z)).

Although the paper by Zink and the present authors triggered the tremendous

interest in the relation between coding and algebraic geometry, the idea of the

codes is due to Goppa [2]. In his prize-winning paper of 1970 [3], he defined a

class of codes that generalize RS and the well-known BCH codes. These codes
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became known as Goppa codes but have now been renamed "classical" Goppa

codes, since the codes from algebraic geometry also deserve to be known as

Goppa codes. Once again, the idea of generalizing RS codes has led to a great

discovery. In their preface, the authors state that Yu. I. Manin was the first

to understand and appreciate the link between the seemingly unrelated parts of

mathematics. This led to research on the number of points on curves over a

finite field and a seminar on the subject, where the authors were present, etc.!

Let X be a nonsingular projective curve defined over the field ¥q and let

P\, • • • , Pn be rational points on X. Let D be the divisor ¿>i H-h Pn , and

let G be a divisor on X with support disjoint from D. The first Goppa code

associated with the pair D, G is the linear code C(D, G), which is the image

of the linear mapping a: S?{ß) — ¥nq defined by a(f) := (/(Pi), ... , f{P„)).
The other Goppa code is the code C* (D, G), which is the image of the linear

mapping a* : Q(G - D) -> ¥"q defined by

(*•(*):= (Res,, (ij),..., Resji'fa)).

The dimension and a bound on the minimum distance of these codes are found

by using the Riemann-Roch theorem. The codes C(D, G) and C* (D, G) are
duals, which follows from the residue theorem.

These codes are introduced in Chapter 3 (in both senses, the central one).

The algebraic geometry treated in Chapter 2 suffices to appreciate this main

chapter. As examples, codes of small genera are treated (g = 0 corresponds to

RS and BCH codes), e.g., elliptic codes (g = 1) and also codes corresponding

to curves with the maximum possible number of rational points. Furthermore

hermitian codes and hyperelliptic codes are treated (the names being derived
from the curves).

The third section of this chapter is devoted to decoding algorithms, the topic
of interest to those who actually hope to use these codes in practice. An anec-

dote must be saved for posterity. The reviewer gave a talk about codes from

algebraic geometry in Denmark some years ago, explaining their incredibly good

parameters. From the audience Justesen commented that his experience as an
engineer told him that codes that were that good had to be very much longer,

so there must be some mistake in the theory. On the way home (a long train

ride) he convinced himself that the geometers had made no mistake and a year

later he and his collaborators [4] had designed the first good decoding algorithm
for these codes! Their ideas were made precise by Skorobogatov and Vladuî [9]

and the procedure was improved considerably (in theory) by Pellikaan [7].

The final section of this chapter presents the asymptotic results, i.e., the

improvement of the Gilbert-Varshamov bound. The improvement depends on

a sequence of codes coming from a sequence of modular curves. These codes

are the topic of Chapter 4, in which both classical modular curves and Drinfeld
curves are treated. Although there are many differences between these curves,

both types have many rational points (with respect to their genus), which is

the key to the good asymptotic results. This chapter and the final one are only
suitable for experts in number theory and algebraic geometry.

A sphere-packing in W is an arrangement of equal spheres such that no point

of the space is in more than one of the spheres. Many of the best known packings

are obtained from lattices. A number of authors have studied the connection

between lattices and sphere-packings on the one hand and binary codes on the
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other. The simplest example of such a connection is the lattice that has as

centers all vectors x = (xi, ... , x„) e W for which y/2x (mod 2) e C, where
C is a binary code. Most of what is known in this area can be found in the

book by Conway and Sloane [1]. Chapter 5 of the book under review starts with

a treatment of this connection and shows how codes from algebraic geometry

lead to good sphere-packings. The main results are of an asymptotic nature.

The essential part of the chapter treats codes that are analogues of codes from

algebraic geometry, now based on algebraic number fields. The corresponding
lattices are always mentioned.

It is clear that this book is a valuable addition to the existing literature on this

fairly young field. The expert will definitely need to have it in his library. For

this he must pay the exorbitant price of the book. The least one could expect
from the publisher to justify the cost would be a copy editor to have corrected
the often clumsy English; (for example, the article is missing very often where

it is required but occurs where it should not). The reviewer was disturbed by

many mistakes in the references and confused by some of the strange notation,

e.g., \x~\ where others use [x\ • The authors expect the next decade to witness
many new results in this area. They are probably right and their book will
contribute to the research that produces these results!
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