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Riemannian manifolds whose curvature is bounded above or below. Altogether,

I found this book enjoyable to read and can recommend it very highly.
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Evolution of random search trees, by Hosam M. Mahmoud. Wiley, New York,
1992, 324 pp., $54.95. ISBN 0-471-53228-2

In everyday life we usually store files in a filing cabinet in alphabetical order,

which makes it easy for a person to locate an existing file or insert a new file.

But in a computer, assigning storage locations in this contiguous linear way is

less efficient, because (for instance) inserting a new file in the middle would

require half the existing files to be moved. One alternative (among many) is

to regard the storage locations as arranged in a binary tree. If files arrive in

the order "PIG DOG SHEEP CAT DUCK COW RABBIT" we can store them
successively, without moving previous files, as shown in the figure.

The rule for adding a new file, say FOX, is to compare with the root (PIG).

Because FOX precedes PIG in alphabetical ordering we move to the left child

(DOG) and compare FOX with DOG; because FOX does not precede DOG
we move to its right child (DUCK), and after another comparison we finally

store FOX as a right child of DUCK. Note that the same procedure enables us
to locate an existing file. This data structure is the binary search tree. In the
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7-item example pictured, the average number of comparisons needed to locate

a file is (1+2 + 2 + 3 + 3-1-3-1- 4)/7. This number, and the shape of the
tree, would typically be different with a different ordering of arrival of the files.

But a natural probabilistic model is that all n\ possible orderings of n files are

equally likely, and under this model one can study the expected average number

c„ of comparisons needed to locate a file, and it turns out that

(1) c„~21og«.

This result is classical (for computer science) and, indeed, tree-based searching

structures occupy about eighty pages of the famous work of Knuth [1]. The
present book is devoted to extensions of ( 1 ) in three directions.

(a) Replace "average number of comparisons" by some other measure of

efficiency (e.g., "maximum number of comparisons"), and study its expectation.
(b) Replace the particular binary search tree with trees constructed via differ-

ent rules (the book discusses w-ary trees (m > 2), quad trees, tries, and digital

search trees).

(c) Refine results on expectations to give results on asymptotic distributions.

The book seems intended partly as a graduate text for computer science and

partly as a record of recent research results and methods. It does a very good

job on basics: describing carefully the different mathematical models and their

implementation as algorithms and giving a clear exposition of the simpler math-

ematical analysis. On the other hand, some of the sections dealing with recent

results read more like research articles than a textbook. Mathematicians should

be warned that little attempt is made to connect the rather narrow topic of the

book to the larger world of computer science. For instance, Chapter 4 treats

quad trees, a method of storing locations of points in «-space. This is a rather

minor aspect of the large and thriving field of computational geometry (see,

e.g., Preparata and Shamos [2]) devoted in part to methods of storing posi-

tions of objects in space in such a way that specified types of questions (convex

hulls, nearest neighbors, line of sight) may be answered quickly. But uninitiated

readers get no hint that this huge field exists.

Turning to questions of mathematical techniques for solving probability prob-

lems arising in computer science, one extreme is represented by what I call the

"Knuth school," whose strategy is to transform immediately to analytic prob-

lems involving recurrences, generating functions, and their asymptotic analysis

via the Darboux method and Mellin transforms and their inversion by contour

integration. This school (see Vitter and Flajolet [3] for a recent survey) has in

the past paid almost no attention to the work of mainstream mathematical prob-

abilists over the last 40 years. Conversely, the mainstream has largely focused

on continuous problems and ignored concrete discrete problems. Fortunately,

this academic Cold War is also ending. Thus the present book, though its heart

is still with the Knuth school, does contain uses of modern mainstream meth-

ods, such as the martingale analysis of internal path length of binary search tree

and the branching random walk analysis of their height. There are certainly

other mainstream ideas on the shelf ready to be used (e.g., the proofs of trie

height asymptotics can surely be simplified by appealing to the Poisson limit

theorem for {/-statistics). Conversely, computer science examples such as the

binary search tree and the Metropolis algorithm are more deserving of space
in introductory stochastic processes texts than time-worn examples like "type
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2 counters." More interaction between mathematical probabilists and those

applying probability to discrete problems will benefit both groups.
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Nowadays it seems to be widely admitted that a mathematical theory reaching

its final stage often becomes almost a triviality. The main technical emphasis

in such a theory is put on the language, i.e., the notions and definitions, which

must be very precise, though often quite complex to cover various applications,

and so developed that the proofs turn out simple and clear. A basic example

here is the theory of differential forms with its highly elaborated language and

very few simple, but fundamental results like Stoke's theorem and Poincaré's

lemma. The theory of Hamiltonian actions did originally invent certain very

useful notions, e.g., the momentum mapping, but also borrowed some technical

tools (Morse theory, equivariant cohomology) from other fields. Now, after a

decade of dramatic progress, many chapters of the theory have reached the final

stage, and a perfect indication of this is the book by Michèle Audin.

1. Convexity Theorem

Perhaps the most famous and beautiful result that the theory of Hamiltonian

torus actions is known for is the Atiyah-Guillemin-Sternberg convexity theorem
[At] and [GS1]:

Let (W, a>) be a compact connected symplectic manifold equipped with a Hamil-

tonian action of a torus T. Then the image P of the momentum mapping
J: W —► t* is a convex polyhedron and all the preimages J~l(y), ye t* are
connected.

The convexity theorem is a very advanced generalization of the classical re-

sult by Schur [S]: the main diagonals of n x n Hermitian matrices with fixed

eigenvalues form a convex set in E". The reader interested in the relation

between these two results should consult the book or original papers [At, GS1].

Here I cannot resist the temptation to outline the proof, but first let us recall

the definitions and notions we have used. A symplectic manifold is a manifold


