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2 counters." More interaction between mathematical probabilists and those

applying probability to discrete problems will benefit both groups.
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Nowadays it seems to be widely admitted that a mathematical theory reaching

its final stage often becomes almost a triviality. The main technical emphasis

in such a theory is put on the language, i.e., the notions and definitions, which

must be very precise, though often quite complex to cover various applications,

and so developed that the proofs turn out simple and clear. A basic example

here is the theory of differential forms with its highly elaborated language and

very few simple, but fundamental results like Stoke's theorem and Poincaré's

lemma. The theory of Hamiltonian actions did originally invent certain very

useful notions, e.g., the momentum mapping, but also borrowed some technical

tools (Morse theory, equivariant cohomology) from other fields. Now, after a

decade of dramatic progress, many chapters of the theory have reached the final

stage, and a perfect indication of this is the book by Michèle Audin.

1. Convexity Theorem

Perhaps the most famous and beautiful result that the theory of Hamiltonian

torus actions is known for is the Atiyah-Guillemin-Sternberg convexity theorem
[At] and [GS1]:

Let (W, a>) be a compact connected symplectic manifold equipped with a Hamil-

tonian action of a torus T. Then the image P of the momentum mapping
J: W —► t* is a convex polyhedron and all the preimages J~l(y), ye t* are
connected.

The convexity theorem is a very advanced generalization of the classical re-

sult by Schur [S]: the main diagonals of n x n Hermitian matrices with fixed

eigenvalues form a convex set in E". The reader interested in the relation

between these two results should consult the book or original papers [At, GS1].

Here I cannot resist the temptation to outline the proof, but first let us recall

the definitions and notions we have used. A symplectic manifold is a manifold
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equipped with a closed 2-form a> which satisfies the nondegeneracy hypothesis:

co" 7É 0 anywhere on W. Here, 2« = dim W. Examples: the cotangent

bundle to a manifold and coadjoint orbits of a Lie group carry natural symplectic

structures. Any function h on W gives rise to the vector field £ defined by

the Hamilton equation i^co = dh . The Hamiltonian h is said to be periodic if
Ç generates a circle action on W ; a circle action obtained in this way is called

Hamiltonian. It is easy to see that the critical points of h are precisely the

fixed points of the action. The next bit of symplectic geometry we need is the

Darboux theorem: a symplectic structure can be linearized near every point,

i.e., it is locally diffeomorphic to the "standard" linear symplectic structure

^2 dpi A dq¡ on R2" . Moreover, it can be linearized along with a Hamiltonian

action of the circle T1 (the equivariant Darboux theorem): if x e W is a fixed
point of the action then a neighborhood of x is equivariantly diffeomorphic

to a neighborhood of the origin in R2" equipped with the standard symplectic

structure and the Tl-action given by the quadratic Hamiltonian ¿~1 ai(pf + of) ■

This implies that h is a Morse-Bott function (i.e., its critical set is a smooth

submanifold and d2h is nondegenerate on the transversals to the critical set),

the critical submanifolds of h are even-dimensional (in fact, symplectic), and
all the indexes are even. Now Morse theory tells us that all the levels of h are

connected (the convexity theorem for T'-actions!) and, in particular, h has a

unique local maximum and minimum. If the critical points of h are isolated

then h is a perfect Morse function.

Consider now a Hamiltonian action of the torus T on W with the momen-

tum mapping J. Such an action can also be linearized near a fixed point. This
argument implies that:

(i) The image J(P) is "locally convex": for any x eW there exists a neigh-

borhood U of x and V of y = J(x) such that J(U) = Cx n V, where Cx is
an affine convex polyhedral cone in t* with the vertex at y. (To prove this it

is enough to linearize the action of Stab* .)

(ii) Everything we said about a periodic Hamiltonian remains correct for a

quasi-periodic one, i.e., for h e C°°{W) such that the flow of c¡ topologically
generates a torus action on W. In particular, for any linear function n on t*

the function no J has a unique local minimum.

(iii) For every x e W we have P c Cx. In fact, if P is not contained in

Cx , then one could find a linear function n such that n o J has at least two

local minima. But this contradicts (ii)!

Finally, by (i) and (iii) the image P must be a convex polyhedron and,

moreover, P coincides with the intersection of all the cones Cx . Arranging

this argument in a more elaborate fashion one can prove that the "fiber" of J
is connected.

2. Equivariant cohomology and the Duistermaat-Heckman formula

The stationary phase principle takes an especially simple and explicit form

for a periodic Hamiltonian h. Namely, it was proved by Duistermaat and

Heckman [DH] that if all the critical points x of h are isolated then we have
the exact formula

m f c-^<œ"        l     yr^w'
{) Jw n\      (V^lt)"2?       ex       '



BOOK REVIEWS 317

where the integer number ex is assigned to a critical point x as follows. Every

x is a fixed point of the Tl-action given by h ; thus, as before we can linearize

the action near x and so write h = h(x) + 52 a¡(pf + qf) in some local coordi-

nates Pi, q¡ near x. Then we set ex = a\a2 •■ • a„ . Note that ex is an integer

because h is periodic and so all coefficients a¡ must be integers.
A very simple and enlightening proof of this result is due to Atiyah and

Bott [AB] and Berline and Vergne [BV]. The key point of the proof is to treat

the left-hand side as the integral of certain equivariant cohomology class. Let

T = Tl. Following [AB] we identify the T-equivariant cohomology Hj(W)

with the cohomology of the equivariant de Rham complex. This complex is

just the graded ring fi^(H/)[w] equipped with the differential D = d + i(u,

where u is an "independent variable," degw = 2, and Çïj(W) is the ring of

T-invariant differential forms. For example, if the action is trivial: Ç = 0, then

H}{W) = H*{W)®3? , where 31 = R[u]. Note also that to is not equivariantly

closed, but its "extension" co- h-u is.

Pick an equivariant form a e il^(W)[u] and expand it as ^Oif(u), where

f e 31 and 07 is a differential form of degree i. Now it is natural to set

¡w ° = f2" Sw °2« • The localization theorem (see [AB] or the book) says that

the integral of a depends only on the restriction of a to the fixed point set
WT:

(2) /*=EJw ~Z,

°o{x)Mu)

W -,. <-x>*

To prove (1) we apply (2) to a = exp(<y -h-u) and set u = y/^-\t.

Among various applications of (2) we would like to mention just one more,
namely, the relation

xewT  x

which, as well as (2), holds for a symplectic, i.e., «y-preserving, or even almost-

complex T-action. To prove it one has to substitute a = 1 in (2). For a

Hamiltonian action (3) also follows from (1) [DH].

The original proof of (1) is based on another argument, though it is also
relevant to equivariant cohomology. Namely, the right-hand side of (1), re-

garded as a function of t, is the Fourier transform of the function / such

that for any regular value c of h we set f(c) equal to the volume of the level

Mc = {h = c}, i.e., f(c) is the integral of a>2n/dh over Mc. According to

Duistermaat and Heckman [DH], / is a piecewise polynomial function. To

see this we equivariantly identify all the levels Mc, c e I = (en, C\), where the

interval / does not contain critical points of h . Thus the reduced symplectic

structure a>c on Bc = Mc/T, becomes a function of c. A straightforward

calculation shows that this function is linear (i.e., affine), so f(c) — JB co"-1

must be polynomial on /.

Coming back to equivariant cohomology we observe that Hj(Mc) =

H*(BC,M) because the T-action on Mc is locally free and the equivariant

cohomology is taken over R. It turns out that the derivative x = d[coc]/dc
has a nice topological interpretation. Namely, the cohomology class x is the
so-called Euler class of the locally free action on Mc (independent of c e I).
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For example, if the action is free, then x is just the Euler class of the circle

bundle Mc -> Bc. Motivated by this simple analysis, we come to the question

of what happens to Bc, x > and o)c when c goes through a critical value of

h . The book under review contains a detailed account on this matter (see also

[M, G] and, in particular, [GS2]).
As we see equivariant cohomology is a useful and powerful tool to be used

in the theory of Hamiltonian actions. But what makes it especially attractive is

that Hj(W) is easy to calculate. Namely, for a Hamiltonian action Hj{W) is

isomorphic to H*{W)®31 as an ^-module. In other words the cohomology

does not feel the action at all, i.e., it behaves as if the action were trivial. This

result is apparently due to Kirwan [Kl].

The proof is especially simple for a circle action with isolated fixed points.

Analyzing the Morse complex of h it is not hard to show that any closed T-

invariant A;-form ak admits a D-closed "extension" a = ok + oic_2u + Vk-4U2 +

••• , where a¡ e Çi'T(W). Moreover, the extension a can be made canoni-

cal if, for example, we employ the Hodge theory. Thus we have an K-linear

monomorphism H*(W) —> Hf.(W), which, being 31-linear extended, gives rise

to the desired isomorphism H*(W) x 32 -» //f (W).
Unfortunately this simple method does not work that well when the fixed

points are not isolated. However, applying a more advanced technique, one

can prove the general case literally in a few lines. Recall that there exists a

spectral sequence with E\ = H*(W)®32 converging to the equivariant co-

homology and thus rk^ Hj{W) < aim.H*(W). On the other hand, by the
Borel localization theorem [B] (see also the book or [AB] for a modern treat-

ment) rk^ Hj(W) = dimH*(WT). Finally, since WT is the critical set of

a quasi-periodic Hamiltonian, dimH*(WT) > dimH*(W) and, as a conse-

quence, rk^£"2 = Tk& Hf-(W). This only can happen when the spectral se-

quence degenerates and the ^-term coincides with the equivariant cohomol-
ogy. A rather formal argument shows that the same is true for a Hamiltonian

action of any compact group. Moreover, this result (properly reformulated), as

well as the Duistermaat-Heckman formula, remains correct for some symplectic
actions [G].

3. More about the book

The book by Michèle Audin appears to be a perfect self-contained intro-

duction into the theory of Hamiltonian torus actions. The first two chapters

contain some preliminaries on compact group actions on manifolds (e.g., the

slice theorem) and symplectic geometry. The topics we have discussed are cov-

ered in detail in Chapters 3 and 5, respectively, together with all the necessary

technique (Morse theory and equivariant cohomology). In Chapter 5 the reader
will be pleased to find a simple and intuitive definition of equivariant cohomol-
ogy via the equivariant de Rham complex, which complements the standard

approach based on formal, though useful and very powerful, algebraic topology
constructions.

Chapter 4 is entirely devoted to the Hamiltonian actions on compact 4-

manifolds, in particular, circle actions. Such actions occupy a very special place

in the theory, because, on the one hand, the first nontrivial examples are among
them, and on the other hand, these actions can be effectively described [Au].

Namely, every such action can be obtained from one of a small number of basic
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examples by a sequence of blow-ups. Another interesting result we have in this

dimension is that according to a theorem of McDuff [M] a symplectic circle
action on a compact connected 4-manifold is Hamiltonian if and only if it has

fixed points. Proof [G]: Consider a non-Hamiltonian action; for the sake of

simplicity we assume that the form a = i^m is integral. Then the Morse theory

argument shows that all the critical points x of a are isolated and have index

2, thus ex < 0. By (3) this is possible only if WT = 0 . Conversely, it is clear

that a Hamiltonian action does have fixed points, namely, critical points of a

Hamiltonian.
The last chapter concerns toric varieties, which appear in this context as

symplectic manifolds with the biggest Abelian compact group of symmetries.
In other words a compact symplectic 2«-manifold is toric if it admits a Hamil-
tonian reaction. (Note that here toric manifolds carry symplectic rather than a

complex structure.) Due to Delzant [D] such a manifold is uniquely determined

by the image P of the momentum mapping. Thus the topology of the manifold

and the action can be recovered from the combinatorics of the polyhedron P.

Reading this relatively elementary chapter requires considerable effort, in part,

because some of the results are unclear or even incorrectly stated. (In particular,

this concerns §3.) Hence I hardly can recommend it as an introduction in toric

varieties. On the other hand, the approach developed here, in certain aspects,
is much easier than the standard treatment of toric varieties. Thus I believe
that experts will find the material presented in Chapter 6 interesting and very

useful.
The book under review is by no means a monograph but rather a textbook.

In other words Topology of torus actions on symplectic manifolds does not in-

tend to cover the entire field, and some, even important, results are just briefly

mentioned. Among such results are, for instance, the calculation of equivari-

ant cohomology (outlined in the second section of this review) and the deep
convexity theorem for non-Abelian groups due to Kirwan [K2]. (As the title

indicates, the book is on torus actions.)

The book is written in an elegant and informal style, but not at the cost

of details, and with a care about technicalities. Numerous, often very instruc-

tive, exercises and examples, as well as excursions into related areas, give the

reader a chance to learn not only the theory and applications of Hamiltonian

torus actions, but what may even be more important, its place in the complex

conglomerate of modern mathematics.
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Suppose that /(•) is a nonnegative, differentiable function defined on / =

[to, oo) and that f'{t) < a(t)f(t) for some locally integrable function a(-) on
/. Then

0<f(t)<f(T)exp^a(n)dr^

for to < t < t < +00. This observation is called Gronwall's Inequality. If

/+°° a(n) dn = -oo, then lim^+œ f(t) = 0.
The book under review is concerned with applications of this simple principle

to questions of stability of solutions of problems in fluid dynamics. These
problems are not simple.

The application of this principle to the fluid dynamical problems discussed

in Straughan's book is often called the Energy Method and is closely related to

the Lyapunov method. These problems have a rich mathematical and physical

structure and are among the most important problems in applied mathematics.
We shall mention a few of them later in this review.

The underlying feature of all of these problems is that the fluid motion it-
self is the primary mechanism which drives the transport of various physical
quantities such as momentum, temperature, salinity, etc. This transport by the


