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a well-illustrated, skillful manner. It was a joy for me to spend a few weeks re-

viewing this text. I hope to dig deeper into its contents very soon. I recommend

this text to everyone, who is interested in the subject of semilinear parabolic

partial differential equations. I would like to thank Professor Peter Grinrod

for treating such a difficult subject in a very clearly illustrated and interesting
manner.

G. S. Gill
Brigham Young University
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Confessions of a reviewer. Reviewer to himself. Great! I am glad to have

been asked to review Moreno's book. Now that I will have two copies, I can

keep one at home and one at the university. I will have to read it and thus

hope that my first glance of it, in which the first chapter seemed too difficult,

was deceptive. After all, it should be just up my street with a background in

classical algebraic geometry and the combinatorics of finite projective spaces.

Also, since I have been giving expository talks for some years on the Hasse-Weil

theorem and Goppa codes, I will be able to learn about those parts I did not

fully understand such as the proof of the Riemann hypothesis for curves and

the modular curves Xo(N), which give a counterexample to the hypothesis that
the Gilbert-Varshamov bound is best possible.

Reviewer to reader. Mathematicians, as other scientists, hunt in separate groups

mostly making minimal contact with other groups at a research level; so there

is a real frisson of excitement when a new development brings disparate groups
together.

In 1981 Goppa derived a class of linear codes from algebraic curves over finite

fields, which ( 1 ) are quite general as codes, (2) have parameters circumscribed by

the Riemann-Roch theorem, and (3) have asymptotic properties which improve

the classical Gilbert-Varshamov bound. The discovery of these codes also gave

renewed stimulus to investigations on the number of points on an algebraic curve

for a particular genus as well as to asymptotic values of the ratio of the number

of points to the genus. The Goppa codes therefore link algebraic geometry,
number theory, and coding theory.

The interest in this topic is demonstrated by the number of survey articles
[1, 6, 10, 14-18] and books [11, 13] that have appeared.

Reviewer to author. I like the first sentence of the preface: "This is an introduc-

tion to the theory of algebraic curves over finite fields." The last sentence I find

somewhat mystifying: "Chapter 5 on error correcting codes and the appendix

may be studied independently from the rest of the book; they are intended

mostly for workers in the field who want to understand the new results about

codes on algebraic curves over finite fields." Does this mean that coding theorists
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should not read the rest of the book and that it will give them no preparation

for Chapter 5 or does it mean that it is the place for algebraic geometers to look
to understand the applications to coding theory?

Reviewer to reader. Let F9 be the finite field of q elements and let (Fg)" be

considered as a vector space. Then a q-ary [n, k, d]-code C is a subspace of

(Fq)n of k dimensions such that the minimum number of nonzero coordinates

in any element of C \ {0} is d, the minimum distance; such a code corrects

[\(d - 1)] errors. The minimum distance has the upper (Singleton) bound:

d < n - k + 1. The Main Coding Theory Problem for linear codes is to find

codes optimizing the third parameter among n, k, d when the other two

are fixed. Another view is to define R = k/n , S = d/n; then for fixed ô, let

a(S) = lim supn^oo R. The result of Gilbert-Varshamov is that a(S) > 1 —H(S)

where H is the entropy function given by H(0) = 0, H(t) = t\ogq(q - 1) -

tlogqt-(l-t)logq(l-t) for 0<t<(q-l)/q; also a(S) = 0 for (q-l)/q <
S < 1. It was long thought that this theorem gave the best lower bound.

Now to turn to algebraic geometry. It will suffice here to consider plane

curves. Let F be a ternary, homogeneous polynomial over Fq and let V(F)

be the set of zeros of F in the protective plane PG(2, q). Let us regard
the corresponding curve ^ as a triple (q, (F), V(F)) where (F) is the ideal

generated by F in Fq[X, Y, Z]. A rational point of W is an element of

V(F) ; however, a point of W is a zero of F in PG(2, qr) for some r, that

is, fê carries with it the zeros of F in any extension of Fq .

A point P = (x, y, z) of W is singular if dF/dX = dF/d Y = dF/dZ = 0
at (x, y, z). We note that a singular point does not have to be a rational point.

For example, if q =-\ (mod 4) and F = (X2 + Y2)2 + (X2-Y2)Z2 + Z4 , then

W has the singularities ( 1, ±j, 0), where i2 = -\, which lie in PG{2, q2) but
not in PG(2, q).

Reviewer to author. Having now looked through Chapter 1, I have a distinct

sense of foreboding. The only example states that the curves with affine equa-

tion y2 - y = x3 - x2 over Fn has a singularity at x = -3. It would have
been helpful for the nonexpert had it been stated that (-3, -5) satisfies the

equation and both partial derivatives are zero at this point. You do state that

you are giving only a "summary of key results," but to do this without examples

is terrifying. In the exercises at the end of Chapter 1 numbers 4 and 6 are con-
tradictory. Exercise 6 implies that over Fq the curve with F = X4 + Y4 + Z4

has an automorphism group c73(F3) (= PSU{3, 9)) which has order 63.96,
whereas exercise 4 would imply that 96 is the maximum possible order.

From the first paragraph of Chapter 2 it is clear that it is crucial to have
understood discrete valuation rings of the function field of a curve since they,

referred to as closed points, are the elements from which divisors are defined. It

is already clear to me that I have previously been working with an inadequate

notion of a divisor. By the end of Chapter 2,1 am still looking in vain for some

example that might help me or any other reader understand divisors and all the

associated notions. If ever there was a subject in which examples were both
easy to give and enlightening, this is one.

Reviewer to reader. Let F be absolutely irreducible over Fq and define a divi-

sor on ? as Z) = Y^nPP where P is a point of W (not necessarily rational),
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np e Z, and np = 0 for all but a finite number of P and the degree of D as

degZ> = X) «p • Also Z) is effective or positive if «p > 0 for all P. The divisors

form a free abelian group Div(^). Now, this is not really good enough. We

should consider a subgroup Div*(W) of Div(^), which is defined as follows:

if D = J2 nPP £ Div*(W) with Q e PG(2, 0r)nsuppD, then all the conjugates
of ß occur in D with the same coefficient.

Let us illustrate with F = X3 + Y3, + Z3 and groundfield F2. We require

F4 = {0, 1, co, co2\co2 + co + 1 =0} and F8 = {0, 1, s, e2, e3, e4, e5, e6|e3 +

e2 + 1 = 0}. The points of ^ over F2 are {P0 = (0, 1, 1), P, = (1, 0, 1),

P2 = (1, 1, 0)}, over F4 are {P0, Pi, P2, Öo = (0, 1, co), Q2 = (0, 1, co2),

Ô, = (1,0, w), Ô, = (1,0, co2), Q2 = (l,co,0), Q2 = (1, co2,0)}, and
over F8 are {P0, Px, P2, Ri = (1, s, s3), R2 = (1, e2, s6), R4 = (1, e4, e5),

R2 = (1, e3, s), R2 = (1, e6, e2), R4 = (1, e5, e4)}.

The effective divisors in Di\*(W)

of degree 1 are Pn > P\, ?2 (a total of 3);

of degree 2 are 2P;, ¿, + Qj , P¡ + P¡ (a total of 9);
of degree 3 are 3P,, 2P, + P,, P0 + P, + P2, P, + Qj + Qj , R¡ + R2 + R4

(a total of 21).

For / in the function field K(W) of W let (/) be the associated divisor.

With D = YJnPP let us take L(D) = {f e K{W)\{f) + D > 0} U {0} ; that is,
L(D) contains those elements of the function field whose associated divisor has
poles of order not greater than np at P. For example, if W = (4, (X3 + Y3 +

Z3), F(F)) and D = 3P0 then /, = X/(Y+Z) has (/,) = P0+Qo+ß^-3P0 =

Qo + Ql- 2Po and f2 = Y/(Y + Z) has (/2) = P, + ß, + ß, - 3P0 ; thus /,
has a pole of order 2 at Po and ^ a pole of order 3, whence both /i and f2

are in L(3Po).

Reviewer to author. Now that I have reached Chapter 5, I cannot understand

why §§5.2 and 5.4 are not at the start of the book, because many of my and

perhaps other readers' difficulties would have been alleviated.

Reviewer to reader. To give the essential idea of Goppa codes, it now suffices

to give Riemann's theorem rather than the Riemann-Roch theorem: if 1(D) =

dimL(£>), then 1(D) > degD + 1 - g with equality if degü > 2g - 2, where
g is the genus of the curve ^.

To construct the codes that we want, let D — P\ + • • • + Pn, where the

P¡ are distinct points in V(F) and let E be a divisor of degree m with

support disjoint from D. Then let 6: L(E) -> (Fq)n be given by 6(f) =

(/(Pi), ... , f(P„)), and denote the image of 6 by C(D, E). Let us also take
n > m > 2g - 2. The code C(D, E) is an [n, k, d]-code with n < Ni where
(i) \Ni-(q+l)\< 2gy/q ; (ii) k = m+l- g; (iii) d>n-m. Part (i) is the
Hasse-Weil estimate; parts (ii) and (iii) follow from Riemann's theorem.

As a corollary, it follows immediately that

(i) n-k+\>d>n-k+\-g\
(ii) R + S>l-(g-i)/n.

As an example, take as before

g? = (4, (X3 + Y3 + Z3),{P0, Pi,P2,Qo, Q¡,Qi, Q2,Q2,Q¡})-
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Let 0 = Pi+P2 + ßo + ßo + ßi + ß2 + ß2 + ß2 and let E = 3P0. The curve W
is elliptic; that is, g = 1 . By Riemann's theorem 1(E) = 3+1-1 = 3. Hence

a basis for L(E) is {1, f\, f2} . This therefore gives a generator matrix G for

C(D, E), where the first column is 1, /i(Pi), f2(P\), and so on:

G =
1111 1111
110 0 co2 co co2 co
0lcoco200     1l

Part (i) of the corollary says that, with n = 8 and k = 3, we have 6 >

d > 5. As the third row of G has weight 5, this means that d ^ 6. So, in
this case, C(D, E) is an [8,3, 5]-code. Tsfasman, Vladut and Zink [12] and
independently Ihara [7-9] investigated modular curves to obtain the following
result.

Theorem. For q = p2h there exists a sequence of modular curves Xo(N) such

that liniAr^oo g¡n = (^/q - 1)_1, where g is the genus of X0(N) and n is the

number of rational points of X0(N) over Fq .

Using these curves and part (ii) of the above corollary the former team de-

duced that for q > 49, with ß = (^/q - 1)_1 , the line a = 1 — ß — Ö meets
the curve a = 1 - Hq(ô) in two points ô\ and <52 ; thus there exists an infinite

sequence of q-axy codes lying above the Gilbert-Varshamov bound.

Reviewer to author. This is all clearly explained, but the part on modular curves

is still tough going. It seems to me regrettable, however, that the basic ideas of
linear codes were not explained.

Reviewer to reader. Let W = (q, (F), V(F)) and let N¿ be the number of

points of W in PG(2, q'), that is, rational over Fq¡. The Hasse-Weil theo-

rem states that Ç(ff, T) = exp(£fyT'/i) = Y,Tde&D(D e Div*(^) with D
effective) satisfies

where

and

C(W,T) = f(T)/{(l-T)(l-qT)}

f(T) = (\-axT)-..(\-a2gT)

(i) rxicig+i = q, 1 < / < g ,

(ii)  \a¡\ = Jq, 1 < i <2g.

The last part is known as the Riemann hypothesis for function fields over finite

fields, there being an appropriate analogy with the classical case. This has the

consequence that Nh = 1 + qh - (a\ H-h a^). An immediate consequence

is that \N\ — (q+\)\< 2g^Jq. The upper bound is achieved when q is square

and ^ is the Hermitian curve given by F = X^+l + Y^+l + Z^+l. It

should be noted that the Frobenius automorphism x —* x^ does not induce

an automorphism in the sense of algebraic geometry, since it does not give an
invertible polynomial map over any extension of Fq .

As an example of the theorem, take W = (2, (X3 + Y3 + Z3), {P0, Pi, P2}).

Then £(i?, T) = (1 -cT + 2T2)/{(\ - T)(\ -2T)} . As AT, = 3 = l+2-c,so
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c = 0. Hence C(^, T) = (\ + 2T2)/{(\ - T)(l - 2T)} . Now, log £(8% T) =
ZNhTh/h = E(-l)J_1(2r2y7; + £ Th/h + £(2r)*/A . Hence

' 1+2A, /zodd,

VA = I  1 + 2A + 2.2A/2,    ä = 2 (mod 4),

_ 1 + 2h - 2.2hl2 ,    h = 0 (mod 4).

In particular JV"i = 3, N2 = 9, N-¡ = 9, /V4 = 9. We have already seen the
points corresponding to JVi, N2, N^ and may note that over Fi0 the points

of fê are precisely those over F4 . Expanding Ç(W, T) itself gives

Ç(W, T)= \ + 7>T + 9T2 + 2\T3 + --- + 2>(2h - \)Th + --- .

We have also previously seen the 3, 9, and 21 effective divisors of degrees 1, 2,

and 3.
So to understand something of the Riemann hypothesis and Goppa codes,

Chapters 3 and 5 are recommended.

Reviewer to author. I found the appendix on the "Simplification of the singu-

larities of algebraic curves" very clear. This emphasizes a point that you make

earlier in the book: a reader probably needs to study a book like that of Fulton

before coming to yours. As a final piece of pedantry, it is well known that to

describe a result as well-known without giving either the proof or a reference is

neither pleasing nor helpful to the reader.
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Analytic pseudodifferential operators for the Heisenberg group and local

solvability, by Darryl Geller. Princeton University Press, Princeton, NJ,
1990, 495 pp., $29.50. ISBN 0-691-08564-1

The subject of the book is the study of the analyticity of the solutions of

partial differential equations modeled on certain invariant equations on the

Heisenberg group. The importance of such equations comes from the fact that

they arise naturally in complex analysis, in the study of strictly pseudoconvex
boundaries or of CR structures.

An important literature already exists concerning these equations in a more

classical framework, where one is interested in the existence or smoothness of

solutions, and derive Sobolev or Holder weighted inequalities. The analyticity
of solutions has been less studied, although the result of P. Greiner, J. J. Kohn,

and E. Stein sheds light on the problem in a striking way and makes this study

unavoidable. Their result is the following: let Q be a complex domain in C"

with smooth boundary X. Then the db system, i.e., the system of tangential

Cauchy-Riemann differential equations on X describes the differential condi-
tions for a function on X to be the boundary value of a holomorphic function

on Q ; it can be thought of as the differential system obtained from the usual

De Rham exterior differential d by restricting it to antiholomorphic vectors
tangent to X: db is a quotient of the De Rham complex d.

If X bounds a strictly pseudoconvex domain, e.g., if it is the sphere bounding

the unit ball of C" or the equivalent paraboloid x„ + x„ + ¿^i ' xk~x~k = 0, the

equation d*bco = f has a global solution on X if and only if / is orthogonal to

the null space of db, the space of boundary values of holomorphic functions;

in other words, if S is the_Szego projector, i.e., the orthogonal projector of

L2(X) on the subspace kerd¿ of boundary values of holomorphic functions,

the range of db is the null-space of S ; this is a comparatively easy result, which

just means that the range of d*b is closed and follows from J. J. Kohn's a priori

estimates for the ö-Neumann problem.

When X is real analytic the theorem of Greiner, Kohn, and Stein gives a local

version of this result, which is again expressed in terms of the Szegö projector S :

it is known that S is globally defined by an integral kernel, but that its effect on

singularities is local; in particular if X is real-analytic and strictly pseudoconvex
and if / extends analytically near some point x e X, then so does S(f). Also

the singularity of the kernel of S is a local property of the boundary. The
Cauchy-Kowalewski theorem shows that the differential equation with analytic


