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The history of science, technology, and mathematics suggests that it is fruitful

to consider how various areas of mathematics and physics are linked to each

other. As examples, Newtonian Mechanics, Quantum Mechanics, and Einstein

Gravitation Theory are tied to the Theory of Ordinary Differential Equations,

Hubert Space Theory, and Riemannian Geometry, respectively. The same sort

of unified overview can be applied to various parts of Engineering: Computer

Science is tied to Logic and the Algebraic Theory of Languages, and Control

Theory to the Lie Theory of Vector Field Systems and the Theory of Stochastic
Processes.

In this very interesting book, the author investigates the interrelation between

various Lie and complex function theories on the mathematical side and quan-

tum mechanical and field-theoretic theories on the physics side. Many of the

situations he considers involve the theory of deformation of Lie groups. His

point of view, however, is very much that of the 'down-to-earth' mathematical
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physicist and there is very little said about the general setting for the work. The

benefit to the reader is that, rather than wading through a morass of definitions

and explanations of general concepts, one can (hopefully) learn on-the-read;

but, I must say that an appendix on the mathematical background would have

been very useful!

What geometers call the 'theory of complex analytic structures' has long

played an informal role in physics, since analyticity questions have arisen ever

since the nineteenth century. The classical 1-D complex function theory has

always appealed to mathematical physicists because not only does it fit in well

with their computational view of the world, but it also has great mathemati-

cal simplicity and beauty. The explicit solutions of such linear PDEs as the

Wave and Maxwell Equations—especially their Fundamental Solutions, which

the physicists call 'Green's Functions' or 'Propagators'—also involve functions

with fascinating analyticity properties. The attempts that were made in the

1950s and 1960s to understand quantum field theory from an 'axiomatic' point

of view also introduced such analytic structures.

Similarly, Lie groups have been basic mathematical structures for physics

ever since the work of Weyl in the 1920s, although until the past twenty-five

years they were—as mathematical structures—regarded by most physicists with

the same affection that locusts inspire in farmers' hearts. This residual mistrust

of general concepts is, perhaps, reflected in the fact that there is no entry called

'Lie Group' in the index, nor could I find a definition of the concept. The

theory of deformations of Lie groups is even less well known by mathematical

physicists (or understood, for that matter) and there is no indication here that

there even is such a theory. The author talks informally about a concept called

'contraction', which may be regarded as one special type of deformation.

Ever since the quantum mechanical foundational work of von Neumann,

Weyl, and Wigner, it has been evident that a basic mathematical structure for

quantum mechanics consists of the following data:

(a) a Lie group G,
(b) a Hubert space H,
(c) a linear representation p of G by linear transformations on H.

Given the relation between the norm of vectors in H and 'probabilities' of

quantum events, it is natural to assume that the transformation group action of

G on H defined by p preserves the norm on H associated with the Hubert

space structure. Given natural hypotheses about the continuity properties of p,

this assumption determines certain relations between the topological structure

of G and the algebraic and analytic properties of p. For example, p restricted

to the identity component of the identity of G is a unitary representation of

G, and the representation that p induces on the Lie algebra of G consists

of operators that are skew-adjoint operators. In many physical situations the

triple (G, H, p) depends 'on parameters', (e.g., 'the velocity of light', 'mass of
particles', 'Planck's constant'), which leads to a deformation theory.

Often these structures have a geometric genesis. G acts as a group of linear

automorphisms of a vector bundle. H, as a vector space, consists of a set

of cross-sections, and the representation p is that arising from the natural
geometric action on cross-sections. This brings the study of the underlying

mathematics into the domain of what is sometimes called 'geometric analysis'.
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Now, to each such Lie group G one can define a complexification as any

complex analytic Lie group G' whose Lie algebra is isomorphic to the com-
plexification of the Lie algebra of G. If G is simply connected, there is up to

isomorphism just one such simply connected G'. If (G, H, p) is the structure

defined above, and in addition G is simply connected and H is finite dimen-

sional, then the 'matrix elements' of p, considered as complex number-valued

functions on G, can be extended globally to be complex analytic functions on

G'. However, if H is infinite dimensional—as it will usually be in the situa-

tions encountered in physics—this extension property will break down globally,

although such extensions will often exist locally. This leads to an interesting

analyticity structure, which was studied in the nineteenth century using tradi-

tional complex analysis technique for such 'matrix element functions' as the

Bessel and Legendre functions. Such questions are frequently encountered in

work on the mathematical foundations of quantum field theory.

After these general remarks, I turn to Kaiser's book. It is very personal,

dealing mainly with areas in mathematical physics that have interested him

since his student days. Luckily, much of this is now very timely, and Kaiser has

many interesting things to say about such topics as wavelets, coherent states,

and the relation between the group-theoretic and complex-analytic structure of

quantum fields and associated partial differential equations. A central concept

is that of a generalized frame structure for a Hubert space associated with a

Lie group representation. This is a structure that, on the one hand, generalizes

the notion of 'basis of a vector space' in linear algebra and 'resolution of the

identity' in functional analysis and, on the other, is related to the theory of

induced representations and reproducing kernels of Hubert spaces.

The core of the book is Chapters Four and Five, titled "Complex Spacetime"

and "Quantized Fields". They mainly deal with the Galilean and Poincaré

groups and their complexifications, deformations, and contractions, considered

in terms of transformation groups and geometric structures on R4 and C4 .

The author discusses the relation between these transformation groups, various

linear representations of these groups, frames, reproducing kernels, coherent

states, and quantum fields. One of his main points is that some aspects of the

quantum mechanics of relativistic particles and fields are closely linked to the

complexified space-time manifold. There is much here that should be of great

interest to both mathematicians interested in physical motivation and physicists

trying to understand the Lie-theoretic and complex-analytic fundamentals of

their discipline.
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