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been many openings; I recall only one tenure-track appointment then at Har-

vard (a faculty instructor); moreover, the University of Chicago, when offered

the chance of appointing Karl Ludwig Siegel, took no action. In A. W.'s case

the reason cannot be ignorance of Weil's stature; I have personal evidence to the

contrary. I had lectured on algebraic functions at Harvard, using Weil's elegant

proof of the Riemann-Roch theorem. I was then a member of the AMS com-

mittee to choose hour speakers for Eastern sectional meetings. At a committee

meeting, I observed that an active young French mathematician was now in this

country; we should certainly ask him to speak. The chairman of the department

at the "unmentionable" place, also a member of that committee, was glum and

silent. But Weil was invited and did address the AMS, April 28-29, 1944, on
"Modern Algebra and the Riemann Hypothesis" summarizing his astounding

proof of the Riemann hypothesis for function fields. The complete presenta-

tion of this and related results required the preparation of his treatise on the

"Foundations". In late 1944, he and his family left the USA for a position
in Säo Paulo, Brazil, but not before mailing to the AMS offices the completed

manuscript of this book.

To see the full setting of these and other achievements, do read this fascinat-

ing account of the development of a mathematician.

Saunders Mac Lane

University of Chicago
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It would be hard to find a graph theorist who has not written at least a paper

or two on some question involving cycles. Not that this should come as a great

surprise, since only very special graphs (forests) contain no cycles; the fact that

a graph contains cycles leads naturally to many specific questions. What is

the shortest cycle? What is the longest cycle? Is there a cycle containing all

of the vertices? In what ways do various graph parameters, for example, the

minimum degree, influence the existence of cycles of specified length? What

conditions ensure cycles with many diagonals? Graph theory has developed

an array of cycle-related properties (girth, circumference, hamiltonian graph,

etc.) and presents the researcher with the perpetual challenge of relating these

properties to such graphical features as minimum degree, neighborhood unions,

forbidden subgraphs, connectivity, planarity, etc.

Proof techniques for problems involving cycles vary in sophistication. Early

results of Dirac and Ore have inspired many similar approaches. These argu-

ments often involve high levels of creativity and technical skill but may leave
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something to be desired in the way of "structure". For those who crave a some-

what higher level of sophistication, the idea of a bridge (with respect to a sub-

graph), introduced by W. T. Tutte and explored at length in Cycles and bridges

in graphs, may be just what the doctor ordered. Given a graph G and one

of its subgraphs H, a bridge in G with respect to H (or simply //-bridge) is

the subgraph of G - E(H) induced by an equivalence class of edges under the

following equivalence relation: e\ ~ ei if there is a path in G in which the

first edge is e\ , the last is ei, and none of the internal vertices of the path

belong to H. If B is a bridge in G with respect to H, the vertices of B n H

are the vertices of attachment of B. The special case of a bridge with respect

to a cycle was introduced in Tutte's 1956 paper in which the fact that every 4-

connected planar graph is hamiltonian [2] is proved. Indeed, the main theorem

of this paper is one about bridges. It asserts that in a 2-connected plane graph

in which distinct edges e and e' belong to a facial cycle C\ , there exists a cycle
C containing e and e' such that each C-bridge has at most three vertices of

attachment and each C-bridge containing an edge of C\ U Cj , where Cj is the

other facial cycle containing e, has at most two vertices of attachment. From

this result, it follows that given any 4-connected plane graph and distinct edges

e, e' belonging to a facial cycle, there is a hamiltonian cycle through e and e'.

Strengthening Tutte's basic result on bridges, C. Thomassen later proved that

every 4-connected planar graph is hamiltonian connected [1].

At first, bridges were only used as devices for studying cycles in planar graphs.

Now the bridge concept is applied in the nonplanar case and bridges are studied

in their own right. In fact, there is a flourishing industry in which properties of

bridges are explored and the "bridge method" is developed as a proof technique

with widespread application. The present status of this industry is authorita-

tively presented in Cycles and bridges in graphs. Among the topics dealt with

are separating and nonseparating cycles, lengths of bridges, isomorphic bridges,

long cycles in graphs with given minimum degree, cycles with diagonals in graphs

with minimum degree r and girth t, extremal problems related to long cycles

with many diagonals, and longest cycles in graphs with given minimum degree.

Cycles and bridges in graphs is intended for researchers in graph theory who are

interested in problems having to do with cycles and want to know more about

some of the most powerful proof techniques for dealing with such problems.

As remarked at the beginning, this may be just about every graph theorist.
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