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two audiences for whom this book is very useful: Those who want an overview

of the current (as of 1985) state of affairs in parabolic equations and those

interested in seeing what has been done in the field by Chinese mathematicians.
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In 1845 the British engineer J. Scott Russell published results of extensive

experiments on a new type of water wave that he had recently discovered. Such

waves can be observed without much difficulty in a long tank or gutter of con-

stant rectangular cross-section. Suppose the tank is filled with water to a shallow

depth, which is allowed to reach equilibrium, and that a not-too-violent distur-

bance is then created at one end of the tank. (This may be done, for example,

by adding more water behind a barrier and then suddenly removing the bar-

rier.) If conditions are right, one or more smooth humps of water will emerge

from the disturbance and propagate down the length of the tank. As the humps

gradually separate (those with greater amplitude moving with greater velocity),

each will reveal itself to be an individual wave of constant shape and velocity,

not dependent on the others for its existence.
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The discovery of these so-called solitary waves took contemporary hydrody-

namics by surprise; not only had such a phenomenon not been predicted, but

theorists had contended that no such waves could exist. By the turn of the

century, however, several theoretical studies, which confirmed Scott Russell's

observations, had appeared. In particular, Korteweg and de Vries in 1895 pre-

sented an interesting derivation of a quantitative expression for a solitary wave.

Starting from the full equations of motion for surface water waves and simpli-

fying these equations to reflect the a priori knowledge that the desired solution

moves (say) to the right and has amplitude a and wavelength X related to the

water depth h by (a/h) « (h2/A2) < 1, they found that a solitary wave would

approximately satisfy the partial differential equation

ut + ux + uux + uxxx = 0.

(Here u = u(x, t) is the displacement of the water surface from its equilibrium

position at location x and time t. Units of time and distance have been scaled

to give the equation a simple form.) By substituting the expression u(x, t) =

<t>{x - Ct) into their equation and solving the resulting ordinary differential

equation for <I>, Korteweg and de Vries concluded that a solitary wave of speed

C could be described by the formula

u(x, t) = 3(C - 1) sech2(|(C - \)xl2[x - Ct]).

In the several decades following the first appearance of the Korteweg-de Vries

(KdV) model equation, it does not seem to have received much attention—

despite the fact that solitary waves themselves remained a topic of lively interest.

Perhaps it was felt that the equation had served its purpose in leading to the

above formula for solitary waves and that nothing was likely to be gained by

looking for other solutions. Indeed, since the equation had been derived under

the explicit a priori assumption that the solution resembled a solitary wave, there

was no reason to believe that other solutions would be of physical significance.

This state of affairs changed suddenly in the early 1960s, when, through

inspired numerical experimentation, Kruskal and Zabusky discovered that the

KdV equation actually models the whole process of formation of solitary waves

from general initial data. In other words, for a given initial profile f(x), such

as might represent the state of the water in our wave tank immediately after

the barrier is removed, the solution of the KdV equation which equals f(x) at

time zero will evolve into a finite sequence of solitary waves, each propagating

to the right with its own velocity. (There will also be an oscillatory "dispersive"

component of the solution, which stays to the left of the solitary waves and

decays to zero in amplitude.) This result holds even for initial disturbances f(x)

which lie far outside the regime for which Korteweg and de Vries' derivation

of their model equation is valid. Subsequent experiments by such researchers

as Zabusky, Galvin, Hammack, and Segur showed that the qualitative behavior

of actual water waves is well described by the KdV equation; for example, the

equation accurately predicts the number of solitary waves that will emerge from
a given initial disturbance.

When the reversibility in time of the KdV equation is taken into considera-

tion, it follows from the behavior observed by Kruskal and Zabusky that a typ-

ical solution of the equation can be thought of as a collection of solitary waves

of varying heights, coming from the left at t = -oo, undergoing interactions in
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which their individual identities may seem to be lost, and then evolving into a

new collection of solitary waves propagating to the right as t —> +oc . There is

no obvious reason to expect that the waves that emerge will be related in any

simple way to the waves that enter the interaction; but KdV has another surprise

in store for us—the same number of waves emerge as enter, with exactly the

same amplitudes and velocities! Thus a general KdV solution may be conceived

of as composed mainly of a finite number of individual waves, which, though

sometimes hidden within an interaction, are present at all times within the so-

lution. The permanent, particle-like nature of these waves led their discoverers

to christen them "solitons".

It remained to find a mathematical explanation for the behavior that Kruskal

and Zabusky had observed numerically. Apparently the time was ripe for such

an endeavor, for the explanation, which was quickly provided, proved to be as

unexpected and exciting as the phenomenon it explained. In 1967, Gardner,

Greene, Kruskal, and Miura showed that the problem of solving the KdV equa-

tion for given initial data could be transformed into the problem of solving a

certain linear integral equation. (Their novel method of transformation, which

used in-depth work done in the 1950s by Gelfand, Levitan, and Marchenko on

the classical problem of inverse scattering, goes today by the name of "inverse

scattering transform".) This integral equation has simple solutions which, when

transformed into solutions of the KdV equation, give explicit representations of

the interaction of any given number of solitons, with any given distribution of

heights and spatial positions as t —► -oo. In general, such solutions are called

multisoliton solutions. A typical example is the solution

/4cosh(2x - 10Q + cosh(4x - 68Q + 3\
u(x, t) - 72 ^  [3cosh(x-29/) + cosh(3x-390]2   ) '

which represents the interaction of a soliton of amplitude 48 and speed 17 with

a soliton of amplitude 12 and speed 5.

These discoveries made it clear that Korteweg and de Vries had come across

an equation that was more than just a model for solitary waves on water. The

simplicity of the equation in combination with the rich structure of its solutions

made it a potential paradigm for a type of behavior that might be observed in

other physical systems. It had already been observed that the KdV equation

itself arose as a model equation for diverse phenomena outside hydrodynamics.

Now a search began for other model equations whose solutions might exhibit

soliton-like behavior or which might be approachable by methods similar to the

inverse scattering transform. The first step in this search was taken by Lax, who

in 1968 identified an important algebraic property of the KdV equation which

makes the inverse scattering transform feasible. He then could immediately

identify a whole hierarchy of partial differential equations with explicit multi-

soliton solutions. Although none of these equations besides KdV had any known

physical significance, it did not take long for Zakharov and Shabat to use Lax's

idea to find analogues of multisoliton solutions for the nonlinear Schrödinger

equation

iut + uxx + \u\2u = 0,

which rivals the KdV equation in the diversity of its applications. There are now

quite a few equations of physical interest that have been identified as "soliton

equations".   Moreover, the study of solitons and associated phenomena now
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extends far beyond the confines of mathematical physics into other fields of

mathematics, where it has produced many miraculous results (see, e.g., [1-4]).

On the other hand, it is clear that the wider implications of soliton theory are

still far from being worked out. For example, although many explicit soliton-like

solutions have been found for the Kadomtsev-Petviashvili equation

(Ut   +  UX   +   UUX   +   UXXX)X   +Uyy=0,

the role of these solutions in the evolution of general solutions of the equation is

still not understood, due to the fact that interactions between two-dimensional

solitons are much more complicated than in the one-dimensional case. Even in

one dimension, there are many useful model equations, such as the Benjamin-

Bona-Mahony equation

ut + ux + uux - uxxt = 0,

whose solutions exhibit definite soliton-like behavior that is not explainable by

any known theory [5].

The problem of extending the results and concepts of soliton theory to new

contexts is the subject of the book under review. Actually, apart from a brief

description of the inverse scattering transform for KdV, solitons and soliton the-

ory per se are hardly treated in the book. The emphasis is instead on solitary

waves, the term here being interpreted broadly to mean any localized wave that

propagates without change of form. In particular, the author is concerned with

the problem of deriving suitable model equations for solitary waves in physical

systems. He proposes a general method for deriving such equations, which may

be summarized as follows. First, identify an underlying hyperbolic equation

that describes the wave. Since transport processes in nature occur with finite

velocity, it should always be possible to find such an equation, even for diffu-

sive waves (such as heat waves) that are more commonly modeled by parabolic

equations. Next, approximate the hyperbolic equation by a simpler model equa-

tion by using the a priori assumption that the solution being sought is a solitary

wave. (Several schemes for effecting this approximation are described in Chap-

ter 1.) Again, for diffusive or reactive-diffusive waves, the model equation that

results from this procedure will in general be different from the standard model

equations for reaction-diffusion processes.

This general method of deriving equations is illustrated in the book with

two main examples. The first is a derivation of a perturbed KdV equation as a

model for seismic waves. Referring to the "perturbed inverse scattering theory",

which has been worked out by Karpman and others, the author describes the

shape of solitary wave solutions (their profiles are asymmetric, as opposed to

the symmetric profiles of KdV solitons) and investigates the growth or decay of

the amplitude of these waves as a function of time.

The second, more novel, example is a derivation of the following nonlinear

telegraph equation as a model for electrical pulses in nerve fibers:

uxz + (a + bu + cu2)ux + d = 0

(where a, b, c, d are constants). More traditionally, nerve pulses are mod-

eled by systems of reaction-diffusion equations such as the Fitz-Hugh/Nagumo

(FHN) equations, which are nonlinear of parabolic type. The suggestion of

the author is that the above evolution equation may be more amenable to the
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techniques of soliton-related mathematics than the standard reaction-diffusion

model equations; it is duly pointed out that the form of the evolution equations

is reminiscent ofthat of the familiar soliton equation ux^ = sin(w). This line of

inquiry, however, is not pursued; rather, the author contents himself here with

an evaluation of the suitability of his equation as a model equation. It is found

that the equation has traveling wave solutions that resemble experimentally ob-

served pulse waves and that computations of the profiles of such traveling wave

solutions are not subject to the instabilities encountered in computing the pro-

files of FHN traveling waves. (A drawback of the author's model, however, is

that unlike the FHN model, it does not predict the existence of pulse waves

that vanish smoothly at both extremities.) Also, numerical solutions of the

equation are presented which show the evolution of general initial profiles into

pulse waves and which demonstrate that the equation successfully models the

"threshold effect" (initial disturbances with amplitude below a certain threshold

are damped, while those above the threshold are amplified into pulses).

The book is concerned mainly with the art of mathematical modeling and, in

particular, with the elaboration of the above-mentioned general method. The

reader will find little in the way of theorems or proofs and occasionally will

encounter presentations of numerical results whose relevance is difficult to un-

derstand (as in the discussion in Chapter 3 of solutions of the perturbed KdV

traveling wave equation). The author's case, however, is usually stated quite co-

herently, and his carefree and easy style makes for pleasurable reading (despite

a plethora of misprints). Although the analysis contained in the book is fairly

elementary, some familiarity with applied mathematics at the graduate level is

presupposed. The reader may find the book helpful as an introduction to some

general ideas used in mathematical modeling, and as a guide to the literature

for further details.
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