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The linear complementarity problem is a generalization of the problem of
finding a solution to a set of simultaneous linear equations. Although the exten-
sion is somewhat simple, the resulting problem provides an elegant framework
for the theory of linear and quadratic programming and bimatrix games and is
sometimes termed the “fundamental problem” of mathematical programming.
In the book entitled The linear complementarity problem, the authors give the
most complete description of the problem to date and provide an excellent ref-
erence for any researcher in the field and an interesting and stimulating text for
a graduate level course in this area.

For an example of a linear complementarity problem, consider the following
solvable linear programming problem:

minimize (c, x)
subject to Ax>b, x>0.

The standard duality theory for linear programming asserts the existence of a
“multiplier” u which satisfies “dual feasibility”

ATu<c, u>0
and “complementary slackness” conditions
xi(ATu—¢)i=0, ui(Ax-5); =0, for all .

=3 5] e[

and invoking duality theory, we see that linear programming is equivalent to
finding a solution z = (x, u) of the linear complementarity problem

By setting

w=Mz+gq, w>0, z>0, (z,w)=0.

We shall refer to this problem as LCP(M, gq). Note that the variables w;
and z; are nonnegative and their products sum up to zero, so that component-
wise either z; = 0 or w; = 0—hence, the name “complementary”. The scope
of the linear complementarity problem, however, is far broader and the solu-
tion techniques used for such problems encompass many of those prevalent in
mathematical programming. There are many other examples of this form. The
first-order optimality conditions for quadratic programming, bimatrix games,
market equilibrium, optimal stopping for Markov processes, and finding con-
vex hulls in the plane can all be formulated as LCP’s. In fact there are instances
of linear complementarity problems arising in the literature since the 1940s; see,
for example, the work of Du Val [11]. The formulation of these problems in
a complementarity framework enables one to use a unified analysis and adapt
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methods for the solution of one type of application to another. In practice, com-
plementarity arises in many places; for example, in power systems, the voltage
will have to drop when the power hits an upper bound. Even commercial mod-
eling systems for mathematical programs are now allowing complementarity
conditions to be incorporated [2]. A fairly complete treatment of the linear
complementarity problem is given in [1] where many of the above examples are
described. The emphasis of the book is on the mathematical foundations of the
problem and the chapters of the book cover the questions of existence, compu-
tation (both iterative and pivotal), geometry, and sensitivity or stability. This
book, along with [8], gives a comprehensive (and somewhat complementary)
study of the field: for example, the treatment of iterative schemes and degree
theory is only covered in [1]; the treatment of complexity issues is only covered
in [8]. The book is very well written and contains many challenging exercises at
the end of each chapter. Certainly, some of the exercises are so challenging that
a “solution manual” would be a valuable aid for using the book as a graduate
level text. Also, at the end of each chapter there is a section on historical notes
and references; this serves two purposes extremely well. First, it means that the
main text is uncluttered by continual references to other work, which makes it
very easy to read; second, as a reference, it makes finding the relevant parts of
the literature very easy—one just has to look at the end of a particular chapter
to find where more information on a particular subject is to be found and also
the historical context of the work. I also found many of the comments in these
sections to be very illuminating and helpful as well as serving as a historical
reference.

Many of the ideas relating to linear complementarity theory can be thought
of as simple generalizations of linear equation theory. To understand this, one
considers the notion of a “normal cone” to a given convex set X at some point
x € X (which is a generalization of the notion of a normal to a smooth surface).
This set consists of all vectors ¢ which make an obtuse angle with every feasible
direction in X emanating from x, that is,

{cl{c,y—x)<0, forally € X}.

When X = R/, the nonnegative orthant in R”, we label this set as N, (x).
Figure 1 gives examples of this set at a general point x and at the origin. A
little thought enables one to see that the linear complementarity problem is just
the set-valued inclusion

0eMx+q+ Ni(x), x eR%,

or, equivalently, —(Mx +g) € Ni(x) and x € R} . If we let X be the whole
space R", it is easy to see that the normal cone is precisely the set {0} and so
the “generalized equation” reduces to the system of linear equations

0=Mx+gq.

Many of the ideas used in linear equation theory can therefore be general-
ized to linear complementarity theory essentially by using this analogy. Even
further generalizations are possible; see, for example, the notion of generalized
equations due to Robinson [10].

The first fundamental question one should pose when a new problem has been
formulated is when does a solution to the problem exist, and perhaps determine
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FIGURE 1. THE NORMAL CONE.

the multiplicity of solutions. In the complementarity literature this has led to
the investigation of many classes of matrices. Several of the important results
(all found in [1, Chapter 3]) are as follows:

e P matrices (those with positive principal minors) characterize the class
of linear complementarity problems LCP(M, q) which are uniquely solvable
for all q.

e Positive semidefinite matrices (corresponding to monotone LCP’s) are in
the class Qp of matrices for which feasibility implies solvability.

e Row sufficient matrices are characterized by first-order points for an as-
sociated quadratic programming problem solving the linear complementarity
problem, and column sufficient matrices are characterized by the solution set of
the LCP being convex, for every ¢ .

¢ Complementarity problems arising from Z matrices, that is, matrices
whose off-diagonal elements are nonpositive have a “least element” solution,
and this can be determined by solving a single linear program.

The index of [1] has two pages of entries corresponding to different matrix
classes! Certainly, an aid to understanding the relationships between the many
classes given in this index would be an interesting addition to the book for
specialists in the field. The strongest existence results are given in [1, Chapter
3] by means of considering the augmented LCP, LCP(M, §) defined by

~ M d . q

i) el
where d > 0 is a strictly positive vector. This is very similar to the use of a “Big
M ” procedure in the simplex method for linear programming, where a problem
in a higher-dimensional space is generated that can be processed by the simplex
method. Properties of the solution of the linear program as “ M ” gets larger
determines whether the original problem is solvable, generating such a solution
if one exists. The augmented LCP always has a solution, even if the original
LCP is unsolvable, and the proof of existence of a solution of the original LCP
essentially relies on analyzing the behavior of the solutions of these augmented
LCP’s for unbounded sequences of A (the “Big M ” parameter). The original




172 BOOK REVIEWS

analysis for this was carried out by Eaves [3]. This also leads to the definition
of classes of matrices: the most well-known classes here are the copositive and
copositive plus matrices.

After determining the existence of a solution, the next problem is that of cal-
culating such a solution. Clearly, the existence question and the construction of
a solution are intimately related, and in the complementarity field both of these
questions are normally answered using the same technique, that is, a pivotal
technique due to Lemke [6]. The nice feature of the purely analytical proofs of
Chapter 3 is that there are no problems with degeneracy, that is, pivotal steps
of zero length. Obviously, the constructive proofs (given in Chapter 4) have the
advantage of actually producing solutions. Although the basic step of Lemke’s
method is a pivot (as in the simplex method for linear programming), the choice
of pivot step is fundamentally different and is motivated by a path following or
homotopy approach. In linear programming, the incoming variable is chosen to
reduce the objective function, the outgoing variable to maintain feasibility. In
Lemke’s method, there is no objective function. The augmented LCP is used
and an “almost complementary” path is generated as follows. Suppose that

W= (w, y) and Z = (z, ) so that in the augmented LCP above we have
W=Mz+g.
A “basis” is determined by declaring some of the variables to be dependent on
the other variables via this equation. Initially, the basis is “w ” and we set
z =0 and ¢ sufficiently large. If ¢ can be decreased to zero while maintaining
w > 0, we have a solution to our problem. Otherwise, one of the components
of w will hit zero and this variable (the blocking variable) is pivoted out of
the basis, being replaced by ¢. Thus apart from the (¢, y) pair, all the other
complementary pairs of variables have their product zero. This is a so-called
“almost complementary” point. A path of almost complementary points is gen-
erated by forcing the variable complementary to the blocking variable to enter
the basis at the next iteration. It follows that this algorithm either terminates at
a solution of the original LCP (¢ becomes the blocking variable) or with a feasi-
ble ray for the augmented LCP (no blocking variable exists). Much research has
been carried out on the consequences of such ray termination, and this leads
to the notion of processing an LCP, which corresponds either to generating a
solution or proving that no solution exists. There are many classes of matrices
that Lemke’s method is known to process. Several of these classes correspond
to problems that do not possess underlying convexity properties. It seems that
the notion of following a path without enforcing a monotonic decrease in some
objective gives rise to more powerful results (note that the value of ¢ in this
method can rise or fall). Certainly, in the 1960s and 1970s there was much
activity in generalizing these types of methods for finding fixed points of non-
smooth and nonlinear equations. Principal pivoting methods are also covered
in Chapter 4, as are computational extensions of both types of pivotal method.
It is possible to look at the LCP from a more geometric standpoint. First,
an equivalent formulation of LCP(M , g) is to find a zero of the nonsmooth
equation
O=Mx, +g+x—x4

where (x;); := max{x;, O} isthe projection of x onto the nonnegative orthant.
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FIGURE 2. THE LEMKE PATH.

This equation is sometimes referred to as the “normal equation”, the earliest
reference is to [4]. The equivalence is established by noting that if z solves the
LCP then x = z — Mz — g satisfies the normal equation, and if x solves the
normal equation then z = x, is a solution of the LCP. It is easy to see that the
normal map

Mx,+q+x— x4

is an affine map on each of the orthants of R” and is continuous on R”. The
normal mapping is thus an example of a piecewise affine map and is intimately
related to the manifold defined by the collection of the faces of the set R”,
called the normal manifold. Lemke’s method is now seen to be just a clever
way of traversing this manifold. Each pivot step corresponds to a change in the
linear map representing the normal map. The vector d > 0 is a point in the
interior of one of the pieces of the manifold. The almost complementary path
corresponds to the points x(¢) defined by letting

0=Mx(t); +q+td+x(t) — x(t), .

To recover the original scheme, we let z = x, and w = x, —x sothat (w, z) =
0 by definition. The almost complementary variable is again ¢. In terms of a
diagram, essentially we have relabeled the axes in x-space using w and z to
arrive at Figure 2. The almost complementary path is also shown. Chapter 6
of the book covers the geometry of Lemke’s method in more detail and gives
a treatment of the LCP in terms of degree theory. This chapter is most likely
to be beyond the reach of the casual reader but contains many new ideas and
directions for future research.




174 BOOK REVIEWS

If we go back to our motivational example of linear equations, however,
there are two broad techniques available for their solution. The first class of
techniques are pivotal (namely, Gaussian elimination and its derivatives) and
the second class are iterative (namely, Jacobi, Gauss-Seidel, and Conjugate Gra-
dients). While Lemke’s method is broadly based on the pivotal techniques, large
scale problems require solution using iterative techniques (without explicit fac-
torizations). In equation solving, a standard approach is to let

M=B+C

and solve the system ' '

0=Bx*'4+Cx'+q
to determine x‘*! from x' (Jacobi, Gauss-Seidel, etc., can be thought of as
special instances of this splitting). An analogous splitting for the LCP

0€ Bx™*' + Cx' + g+ N.(x™)

results in a sequence of problems LCP(B, Cx' + q) to solve. The seminal
work on iterative approaches for LCP is due to Mangasarian [7], although the
use of the terminology of splitting was introduced by Pang [9]. The theory
relating to these kinds of splittings is developed in Chapter 5 and is still a subject
of much current research in the field. There are three general approaches to
proving the convergence of such methods, namely, the symmetry, contraction,
and monotonicity approaches. The symmetry approach is useful in the study
of convex quadratic programs, the contraction results are used in the study
of asymmetric problems, and the monotonicity results look at sequences of
iterates which monotonically converge to the solution in a well-specified sense.
The symmetry results would appear to be least restrictive of these results (apart
from the symmetry assumption of course). A crucial idea here is the notion of
a regular splitting, that is, one for which B — C is positive definite and B + C
is positive semidefinite. If B — C is positive definite, then it follows that B is
positive definite and, hence, that the LCP(B, Cx +q) is uniquely solvable for
x*1 [1, Theorem 3.1.6]. The proof of the corresponding convergence result uses
error bounds measuring the distance of a given point to the solution set of the
complementarity problem. In the contraction approach, the results rest on an
eigenvalue analysis and would seem to be far more restrictive. The monotonicity
results rely on a hidden Z property of the underlying matrix. An outstanding
open question is to derive general conditions that guarantee the convergence
of such a matrix splitting scheme when the matrix M is not assumed to be
symmetric without using the standard contraction approach.

Due to its close association with linear programming, recent (intense) inter-
est in interior point methods and complexity analysis for linear programs has
rubbed off into the linear complementarity field. In fact most of the results
have been extended to monotone linear complementarity problems, giving even
more justification for considering the LCP as the “fundamental problem”. Al-
though §5.9 of the book gives a nice treatment of interior point methods from a
nonlinear standpoint, the more standard viewpoint from complexity theory can
only be found in recent reserach papers or the books [5, 8]. In fact, much cur-
rent research pertains to extending these interior point methods to more general
classes of linear complementarity problems and to the more general frameworks
of nonlinear complementarity and convex programming.
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Sensitivity analysis is concerned with how the solution to the LCP changes
as one makes changes to the data in M and g . Clearly, in practical situations
much of the data is subject to small errors, and we would like to know whether
the problem we actually solve will give us any useful information about the
problem we are actually modeling. This topic is covered in the last chapter
of the book and is couched in the framework of multivalued maps. We have
mentioned two such multivalued maps above. One is the normal cone mapping,
which takes a given point x and returns a set, the normal cone to the set X at
the point x . The second one is the solution set of the complementarity problem:
given the data M and g, there is an associated set, which is the solution set
of LCP(M, q). The final chapter of the book looks at the sensitivity analysis
by means of the continuity properties of this set-valued mapping. The closely
related topic of the parametric linear complementarity problem is also covered
in Chapter 4.

There are many more features of the problem which cannot be covered here.
An interested reader is referred to [1] for a more complete description of all
the ideas outlined here. I would strongly recommend this book as the most
up-to-date and complete description of the linear complementarity problem. It
is certain to become the standard reference in the field.
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