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Much of the power of linear algebra resides in the idea that any linear trans-

formation on any vector space should be built from one basic example: mul-

tiplication by a scalar on a one-dimensional space. In the context of analysis,

one of the most fundamental instances of this idea is the linear transformation

of differentiation on smooth functions on the real line. Differentiation acts by

a ,scalar (multiplication by A) on each of the exponential functions x >-> eXx .

The Fourier and Laplace transforms are used to express more general functions

in terms of exponentials and so to study their derivatives.

When several linear transformations appear at the same time, the simplest

possibility is that they all commute with each other (as happens, for example,

with constant-coefficient differential operators on R"). The corresponding basic

example has several operators acting by multiplication by different scalars in a

one-dimensional space. Reducing problems to this case amounts to studying

joint eigenvectors for the linear transformations.

Of course it often happens that one is interested in several noncommuting

linear transformations at the same time. A typical example is the three operators

D, X , and / acting on smooth functions on R : differentiation, multiplication

by x, and the identity. There are no eigenfunctions for X (the eigendistribu-

tions are Dirac delta functions) and so, in particular, no joint eigenfunctions for

the three operators. Something more sophisticated is needed as a basic example.

To see what that might be, notice first that the linear span of D, X, and / is

closed under formation of commutators. Writing [T, S] = TS -ST whenever

5 and T are linear transformations of the same vector space, we have

(1) [D,X] = I,        [D,I] = 0, [X,I] = 0.

These relations can be formulated for any three linear transformations {A, B,

C} of a vector space V :

(2) [A,B] = C,        [A,C] = 0,        [B,C] = 0.

Now the idea is to study linear transformations satisfying (2), in order to find

what the simplest possibilities are and, having understood those simplest pos-

sibilities, to try to understand our operators on smooth functions in terms of

them.
It turns out that three linear transformations of a finite-dimensional vector

space cannot satisfy (2) unless C is zero (a case that is unrelated to our orig-
inal example where C is the identity). To study (2) on infinite-dimensional

spaces, one approach is to bring some analysis into the picture. The Stone-von

Neumann theorem says that if A and B are (possibly unbounded) selfadjoint

operators on a Hubert space H satisfying (2) with C equal to the identity,

then H is isomorphic to a sum of copies of L2(R). The isomorphism may

be chosen in such a way that A and B correspond to D and X. This is a
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beautiful and important fact, but in the present context it suggests only that our

example cannot be further simplified.

An algebraic approach is a little more flexible. The simplest model for (2)

(still with C ± 0) has V equal to the space of all polynomials in one variable x ,

A equal to differentiation, B multiplication by x , and C equal to the identity.

A related possibility is to fix complex numbers r and 5 and to consider the

space V of all finite formal sums

£       am{x-s)m,

m = r (mod Z)

on which A and B act as differentiation and multiplication by x (and C

acts by the identity). Yet another is to consider all polynomial multiples of a

fixed exponential function. Because A and B appear almost symmetrically in

(2), we can build more examples from these simply by replacing B by A and

A by -B. Each of the resulting models of (2) can be interpreted in terms

of (polynomial coefficient) differential equations on the line. This approach to

differential equations (by a study of abstract algebraic relations like (2)) is at

the heart of the algebraic theory of ^-modules, as developed by J. Bernstein
and others (see [2, 1]).

Here is a general context in which similar ideas apply. Suppose we have a

complex vector space &~ (e.g., a space of functions) and a finite set {A , ... ,

Dn} of linear transformations of &~ (e.g., differential operators). Assume that

the commutator of any two of these operators is a linear combination of them,

namely,

(3) [Di,Dj] = Y,¿¡jDk
k

for some complex numbers ck . This says that the span of the D¡ is a Lie

algebra q , with Lie bracket given by the commutator of operators. In order to

study the action of these linear transformations on &, one can study first the

structure of an abstract vector space V endowed with linear transformations

{A\, ... , An) , subject to the relations

(4) [4t,*j] = Y,<tjAk.
k

If the Di are linearly independent, the pair (V, {A¡}) is exactly a represen-

tation of the Lie algebra g, and this scheme is more or less what is meant by

"abstract harmonic analysis" for Lie algebras.

To be concrete again, let us take for y the space of smooth functions (or

polynomials, or distributions) on R" and consider the three differential opera-
tors defined by

Dlf = d2f/dxf + --- + d2f/dx2,

(5) D2f = xxdfldxx + ■■■ + xndf/dxn + (n/2)f,

D3f=(x2 + --- + x2n)f.

Here D\ is the Laplace operator on R" . Except for the addition of n/2, D2

is the Euler degree operator. Finally, D3 is just multiplication by the square of

the distance to the origin. They satisfy the commutation relations

(6) [Dl,D2] = 2Dl,        [Dl,D3] = -4D2,        [D2,D3] = 2D3.
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(The constant in D2 has been added to simplify the formula for [D\, D3].)

One reason to study these three operators together is that they all commute

with the action of the orthogonal group 0(n) on functions; in fact, any poly-

nomial coefficient differential operator commuting with O(n) is in the algebra

generated by D\, D2, and D3. Another is the technical importance of the op-

erators individually; analytically interesting properties can be expressed in terms

of linear algebra and these operators. For example, a distribution is killed by a

power of D3 if and only if it is supported at the origin. Similarly, a distribution

is an eigenvector for D2 with eigenvalue k if and only if it is homogeneous

of degree k - n/2. The Laplace operator D\ is, of course, one of the most

interesting differential operators in mathematics; as a random example, recall

that a real-valued function on R2 ~ C is killed by D\ if and only if it is the
real part of a holomorphic function.

The general philosophy of abstract harmonic analysis now says that to study

the actions of D\ , D2, and D3 on functions, one should begin by studying an

abstract vector space V endowed with three linear transformations A\ , A2,

and At, , subject to the commutation relations

(7) [Al,A2] = 2Al,        [Al,Ai] = -4A2,        [A2,A3] = 2A3.

The simplest nonzero linear transformations with these properties are the 2x2

matrices

<*>       *-(î'S).     Mi-.)'     * = ("»)•
These three matrices are a basis of the 2x2 matrices of trace zero: the Lie

algebra sl(2). The study of the equations (7) is therefore precisely the represen-

tation theory of sl(2). For applications to differential operator representations,

it is important not to assume that the vector space V is finite dimensional.

(That special case is nevertheless of great interest in its own right; among other

things, it is the key to the structure of semisimple Lie algebras. An excellent

account of it is in [4].)

There are two basic ideas involved in analyzing (7). To understand the first,

suppose that v e V is an eigenvector of A2 of eigenvalue k. Then A1 v

turns out to be an eigenvector for A2 of eigenvalue k - 2. To see this, apply

the commutation relation (AiA2 - A2A\) = 2A\ to v and use the fact that

A2v = kv . The conclusion is that

kA\v - A2A\V = 2A\V .

This can be rearranged to

A2(Aiv) = (A - 2)AiV,

which is the claim. A similar argument shows that A3v is an eigenvector for

A2 of eigenvalue k + 2. Now write Vi c V for the k eigenspace of A2. The

actions of A\ and ^3 on these subspaces are indicated by

(9) ...Vx_2^Vx^vx+2---
A,        A,

This diagram is the first main idea in the representation theory of st(2).

There is a technical difficulty that deserves mention here. It can easily happen

that in an infinite-dimensional representation V, A2 has no eigenvectors at all.
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In this case all the spaces appearing in (9) are zero, and we have learned nothing

about V. In our original example (5), eigenvectors of D2 are homogeneous
functions. If we want to study the action of the A on polynomials, it is

therefore quite natural to look at eigenspaces of D2 (and quite obvious that

A and A lower and raise homogeneity degree by two). In other contexts

homogeneous functions are not so natural, and other methods are needed to get

something like (9). Consider, for example, the differential operators (5) acting

on L2(Rn). A homogeneous function in L2 is zero, so D2 has no eigenvectors

in L2. On the other hand, there is an orthonormal basis of L2 consisting of

eigenvectors of A - A (the Hermite functions). It turns out that A\ - A3

is conjugate to 2iA2 by an automorphism of the Lie algebra s((2) (the Cayley

transform). Consequently there is an analogue of (9) for eigenspaces of A\-A3,

and this can be applied to L2(R").

To analyze (9) further, we need to understand how the composition A\A3

acts on the eigenspace Vx . For that purpose, consider the linear transformation

(10) Q. = A22+AXA3 + 2A2.

This is called the Casimir operator of the representation V . Using the commu-

tation relations (7), one can check easily that Q commutes with all the A¡. It

follows that the Ai preserve each eigenspace of Q,. Now we are interested in

the simplest possible models of (7); an eigenspace of Q would be a simpler one

inside V. It is therefore interesting to consider the case when Q is a multiple

of the identity. (For the reader who finds this abstract argument unconvincing,

here is a more concrete one. Write Dçi = D2 + A A + 2D2 for the Casimir

operator of the differential operator representation (5). This is a second-order

differential operator on R" , which is not very difficult to write explicitly. If /

is any smooth function on R" transforming according to an irreducible repre-

sentation of the orthogonal group O(n), then / is necessarily an eigenfunction

of Ai • This is proved in §111.2.3 of Howe and Tan's book.)

Proposition. Suppose (V, {Ai}) is a representation of s((2). Then A\ and A3

act on the eigenspaces Vk of A2 as indicated in (9). If in addition, the Casimir

operator D. is a scalar ci, then A\A3 acts on Vi by the scalar c-k2-2k.

Corollary. Suppose (V, {A¡}) is a representation of s((2) and v0 e Vx is an

eigenvector of A2. Assume also v0 is an eigenvector for the Casimir operator Q
with eigenvalue c. Define

f A"v0      ifn>0,

IV^o   ifn<0.

Then vn e Vk+2n is an eigenvector for Q of eigenvalue c and

Av      { w»-i ifn<0,
lV"~ I {c-{k + 2n-2)2-2{k + 2n-2))vn_l    ifn>0;

A2v„ = (k + 2n)v„ ;

3V"     I (c-(k + 2n + 2)2-2{k + 2n + 2))vn+i    ifn<0.

The last assertion of the proposition is immediate from (10); it is the second

main idea in the representation theory of sl(2).   The corollary is a formal
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consequence. Notice that it comes close to describing the linear transformations

Ai as explicit matrices in appropriate bases.
Armed with this information about possible solutions of the commutation

relations (7), one can finally return to the differential operators (5) and say

something about differential equations on R" . One gets first of all a very com-

plete picture of the action of the A on polynomials; this is the classical theory

of spherical harmonics, so called because it leads easily to the spectral decom-
position of the Laplace operator on the (n - 1)-dimensional sphere. Taking

L2(R") as the basic vector space leads first to information about the Hermite

functions and then (less obviously) to the Fourier transform; indeed, the Fourier

transform appears as an operator in a group representation whose differential

is the Lie algebra representation we have been considering.

The development outlined above occupies three chapters—about the first

half—of the book by Howe and Tan. Chapter I begins with a review of the

theory of Lie groups and Lie algebras, continues with a summary of distribu-

tion theory, the Fourier transform, and the Schwartz space on R" , and con-

cludes with a discussion of the spectrum of a Banach space representation of

R" . (This is a generalization of the notion of the spectrum of a selfadjoint op-

erator on a Hubert space; it arises naturally in trying to make precise the idea

mentioned above that commuting families of linear transformations ought to be

understood in terms of simultaneous eigenvectors.) Chapter II is the technical

heart of the book. It consists in large part of a refined version of the corollary

stated above, describing possible realizations of the commutation relations (7).

Chapter III applies these Lie algebra results to the representation theory of the

group SL(2, R) and its coverings. This leads to the (now classical) Bargmann

classification of the irreducible unitary representations. Representations like (5)

are also studied in detail, along with their analogues for the indefinite Laplacians

Y.Ud'IdxJ-Y.U^Idx2.
In Chapter IV the deeper analytic applications begin. Some, like the discus-

sion of fundamental solutions of the Laplacian, will be very familiar to classical

analysts, but even in these cases the authors have a fresh perspective. Oth-

ers are taken from Harish-Chandra's analysis on semisimple groups and are

(unfortunately) almost unknown outside representation theory. Here is an ex-

ample. Make the unitary group U(n) act on the vector space g of n x n skew-

Hermitian matrices (its Lie algebra) by conjugation. (The results, appropriately

recast, apply to any real reductive Lie group.) Write t for the subspace of diag-

onal matrices (with purely imaginary entries). Any [/(^-invariant function /

on g is determined by its restriction p(f) to t, since any skew-Hermitian ma-

trix can be diagonalized by a unitary matrix. The Laplacian A on g preserves

{/(/^-invariance. It follows more or less formally that there is a differential

operator r(A) on t (the radial part of A) with the property that

p(Af) = r(A)p(f).

(Actually r(A) is defined only on the open subset of t consisting of matrices

with distinct diagonal entries.) Harish-Chandra's restriction formula calculates

the differential operator r(A) ; it is the conjugate of the Laplacian Ai on t by

the discriminant function D(t) = Yli<j{ti ~~ (/) • Putting in the definition of

r(A), this becomes

D-p(Af)=Al(D-p{f)).
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A trivial formula of the same type applies to the zeroth-order operator of multi-

plication by the square of the distance to the origin. At this point we can bring
sl(2) into the problem. Recall that the Fourier transform appears in a group

representation generated by these two differential operators. One can deduce

a formula for the Fourier transform of a c7(«)-invariant tempered function /

on g in terms of the Fourier transform of p(f) :

(11) D^(f) = i"("-^2D.p(f)).

(Incidentally, one could try to write an analogous formula for the Fourier trans-

form of rotationally invariant functions on R" in terms of their restriction to

R. As is well known to classical analysts, there is no such formula except for

n = 1 and n = 3 . A typical feature of the book of Howe and Tan is a clear

and simple representation-theoretic explanation of this fact.)

Harish-Chandra's restriction formula ( 11 ) is amazingly powerful. The reason

is that the Fourier transform on all of g, even on t/(«)-invariant functions,

reflects the non-abelian nature of U(n). For example, the Fourier transform

of an invariant measure on a conjugacy class of skew-Hermitian matrices is

more or less the character of an irreducible representation of U{n), lifted to

the Lie algebra. The restriction formula makes it possible to calculate these

noncommutative things using classical abelian harmonic analysis ont. Such

classical results as Weyl's character and dimension formulas follow fairly easily;

this is a first step on the road leading to Harish-Chandra's Plancherel formula

for semisimple groups. Staying within the setting of compact groups, one can

also use (11) to study restriction of representations geometrically (as in [3]);
here there is undoubtedly much more still to be done.

Chapter V is a brief excursion into representation theory for other groups,

leading to Moore's ergodic theorem. The idea is that a noncompact semisimple

Lie group G has a large supply of subgroups isomorphic to SL(2, R). These

subgroups make it possible to translate the very detailed information about

unitary representations of SL(2, R) collected in Chapter III into crude but

nontrivial statements about unitary representations of G. These in turn can

be translated (by ergodic theory) into statements about the action of G on a

homogeneous space with a finite invariant measure.

The usually lucid exposition is marred by a few small mistakes and obscuri-

ties. The definition of Haar measure omits the requirement that compact sets

have finite measure (perhaps because the definition of a measure inadvertently

excludes sets of infinite measure). The formulation of the abstract Peter-Weyl

decomposition for representations of compact groups is distressingly vague and

omits any completeness hypothesis on the representation space. The sketch
of the omitted proof that every unitary Harish-Chandra module for SL(2, R)

comes from a unitary representation appears to be incomplete. The analysis of

invariant eigendistributions on s[(2, R) is correct only for nonzero eigenvalues;

a very careful reader might notice this assumption in the text at the top of page

185, but it is absent in the formulation of the theorem at the bottom of page

186. An erratum sheet deals with a more serious error in the description of
0{p, #)-invariant distributions supported on the light cone.

Despite these minor problems, any graduate student with some understand-

ing of manifolds and measure theory should be able to read this book. The

most difficult sections require elementary hard work more often then deeper
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mathematics. The exercises are many and wonderful, leading the reader through

dozens of interesting examples, omitted proofs, and explicit calculations.

If any mathematician can read it, who should? The authors suggest in the

introduction that their book might serve as an introduction to the weightier

tomes [5, 6], for a student studying semisimple harmonic analysis. This is

certainly a possibility; but Knapp's book especially is already quite accessible,

and many of the wonderfully particular things about SL(2) discussed by Howe

and Tan are not really necessary or helpful for understanding the general theory.

(To be fair, the authors might argue that this reveals flaws in the general theory.)

But the authors also speak of their book as "a day hike to a nearby waterfall",

and this is a better guide to who should read it. Every chapter is full of beautiful

mathematics that is not as well known as it deserves to be. If you like waterfalls,

come and have a look.
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Recursion theory as we know it today was born in the head of Alonzo Church

one day in 1934. Church and his students, in an (eventually unsuccessful) effort

to axiomatize the notion of a function, had arrived at the notion of a lambda

definable function. A rather trivial consequence of the definition was that ev-

ery lambda definable function was computable; i.e., the value of the function

could be computed on a computer using the arguments as input. (Everyone

who has programmed realizes that more powerful computers do not compute

more functions; they simply compute the old functions faster and more easily.)

Church had the radical thought that all computable functions were lambda de-

finable. This was a remarkable foresight, since at that moment it had not yet

been proved that the function f(x) = x - 1 was lambda definable. His student


