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With the advent of integrated circuits and the consequent highly miniaturized

and densely packed semiconductor electronics, it has become impractical to de-
sign circuits by building prototypes and testing them to arrive at a satisfactory

product. An unavoidable first step is to simulate proposed configurations with

computer-aided analyses in order to obtain a promising initial design. More-

over, even that computational problem remains a severe one, for semiconductor

chips are now being produced that contain several million transistors. As a re-

sult, current design simulations examine only small portions of those massive

circuits and use fairly simplistic models of what are in fact quite complicated

electrical networks. An additional complication is that such networks are in-

herently nonlinear, especially when used for digital technology, whereas the
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simplistic models are usually linearized. On the other hand, the abstract theory

of nonlinear differential equations can, at least in principle, encompass massive
models of physical systems. The book under review uses such mathematics to

examine more realistic representations of integrated circuits. It is based upon a

series of recent papers by the authors, which this book organizes into a unified

exposition.

The history of nonlinear dynamic analyses of transistor circuitry extends

back about three decades; some of the early efforts are [1, 4-9, 20-23]. Many

of those and more recent works concern qualitative properties such as existence,

uniqueness, and stability of solutions, although considerable effort has also been

expended toward computational problems. The present book is a timely contri-

bution to that body of research and extends it in several directions. A notable

advance is the allowance of more general kinds of nonlinearities. Prior works

assumed continuous differentiability or piecewise linearity for the resistive part

of the circuitry, whereas Marinov and Neittaanmäki merely allow continuity

with piecewise-continuous differentiability for those resistances.

Another novel contribution is their analysis of delay time for transients. The

estimation of delay time has become a pressing issue in the design of switching

circuits because, with current levels of miniaturization in semiconductor elec-

tronics, the principle constraints on clock speeds for computer circuitry arise

from the delays among interconnection lines. During the past decade consid-

erable effort has been devoted to obtaining rapid and yet acceptably accurate

estimations of delay times. A sampling of such research during the past decade

is [2, 3, 10, 12-19, 24, 25, 27, 28]. Marinov and Neittaanmäki propose a
significant innovation in this research area. Rather than estimating the delay

times along particular input-to-output paths, they construct a global delay-time

criterion that applies simultaneously to the settling of all the voltages in the
circuit. This allows the setting of clock frequency without having to examine

many input-to-output paths individually. Furthermore, they use distributed-line

models for the interconnections, these being more accurate than lumped mod-

els. In doing all this, however, they resort to a linear analysis. Moreover, the

feasibility of their delay-time measure for practical circuits is questionable, for

it appears that computational complexity expands exponentially with the num-

ber of transmission lines. Nonetheless, their results may lead to some important

design tools.

A more detailed discussion of the book now follows. The first half of it

is devoted to the analysis of lumped circuits with bipolar transistors, diodes,

resistors, capacitors, and inductances, all of which may have nonlinear char-

acteristics. That analysis is based upon the theory of ordinary differential

equations in a Banach space X, such as the nonlinear initial-value problem:

dujdt - A(t)u(t), u(0) € X, where u maps the real positive line R+ into

X and A maps R+ into the space of dissipative operators with domains and

ranges in X. The point is that various design problems for bipolar transistor

circuits can be formulated in these abstract terms, hence, making them amenable

to powerful techniques from nonlinear functional analysis. Marinov and Niet-

taanmäki exploit this theory on abstract differential equations to obtain some

new applications concerning both the dynamic and steady-state DC behavior of

electronic circuits. A knowledge of nonlinear functional analysis is required for

a comprehension of their exposition of some primarily standard theory, as also

is a familiarity with semigroups of linear dissipative operators, for that too is
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used in the second half of the book as well.

Qualitative properties of the said bipolar transistor circuits are then exam-

ined, such as the existence and uniqueness of solutions, their boundedness and

stability, and their asymptotic behavior as time tends to infinity. A notable

generalization in the book is the modeling of the resistive part of the network

with nonlinear, continuous, and piecewise-continuously-differentiable charac-

teristics, instead of the linear or piecewise-linear continuous characteristics of

prior works. Also, the other elements are modeled by continuous piecewise-

linear characteristics rather than the continuously differentiable characteristics

of prior models. All this leads to a quite general, albeit complicated, model

of the transistor network. Both strong solutions and, under a strengthening

of the hypotheses, classical solutions are obtained. Moreover, different initial

conditions lead asymptotically to the same unique DC operating state. Thus,

the considered electrical network—although nonlinear—does not admit multi-

ple operating points. The continuity of the final state with respect to variations

in biasing is also shown.

Another generalization this book offers is an analysis of infinite electrical

networks consisting of finitely many voltage sources and bipolar transistors but

infinitely many resistors and capacitors. This is of physical interest because cer-

tain distributed-parameter transmission-line configurations, when discretized by

lumped parameters, become infinite lumped networks [11]. Although there is

presently a fairly substantial body of knowledge concerning purely resistive infi-

nite networks [26], not much is known about the transient behavior of nonlinear

networks with reactances and active elements. Dolezal's work [7, 8] is the no-

table achievement in this area, but his results are quite abstract and difficult to

apply to VLSI circuits. Marinov and Neittaanmäki adopt a more specific and

restricted approach and achieve thereby more explicit results. They construct

one of the very few analyses in this difficult area of research.

The second half of the book abandons nonlinear analysis in order to examine

the dynamic behavior of switching circuits wherein the transistors are for the

most part field-effect transistors rather than bipolar transistors. In any case, all

transistors are now modeled by linear resistors, and the network's transients

are examined between consecutive switching times. A primary objective is the

estimation of a global measure of all the delays in signaling; that measure is

taken to be the time required for all the transient voltages to traverse a specified

fraction of their total variations. Since the principal hindrance to small delay

times under current integrated-circuit miniaturization has become the propa-

gations along the interconnections lines, it is important to model those lines

more accurately with distributed parameters rather than with lumped elements.

This leads to a "mixed network" consisting both of distributed parameters for

those interconnection lines and also with lumped elements for the transistors,

resistors, and capacitors. Actually the inductances of the lines are ignored, with

the result that those lines are analyzed as diffusion channels rather than as wave

channels; this restricts the applicability of the analysis with regard to the higher

frequencies. Nonetheless, this mixed model is an important improvement over

the lumped and overly simplistic models of many prior works.

Here, too, Marinov and Neittaanmäki have set up a model of wide gener-

ality for all kinds of switching circuits. Its mathematical structure is a set of

parabolic partial differential equations representing the interconnection lines,
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with boundary conditions at the terminals of those lines representing their cou-

pling with the lumped parameters—and also with initial conditions along the

lines. All this comprises a rather complicated Cauchy problem, and its solution

involves some Schwartz distributions because the initial conditions are not re-

quired to be differentiable everywhere. Correspondingly, the final steady state

is governed by a set of linear ordinary differential equations obtained from the

prior Cauchy problem by deleting all time derivatives. Once again, existence

and uniqueness results are derived for both the dynamic and steady-state prob-

lems. The continuity of the solutions with respect to variations in biasing and

in initial conditions is established. It is also shown that the transients settle to

the same DC values, whatever be the initial conditions.

As for the estimation of a global delay-time measure, it is assumed that

all transistors are switched just before the initial conditions are applied and

maintain constant resistance values during the transient period. Thus, transient

behavior within the transistors is ignored. The global delay-time criterion that

Marinov and Neittaanmäki propose is the time it takes for the slowest transient

to achieve a given fraction of its total variation. Since no inductances are

considered and since all capacitors are connected to a common ground, all

transients are monotonie. This simplifies the determination of a unique value

for that criterion. The fact that their delay-time measure applies to all transients

taken simultaneously is a major advantage of their formulation. Moreover, they

derive an upper bound on that measure, which can be computed directly from

the element values without having to solve the aforementioned Cauchy problem.

One might expect that some payment will be extracted for such generality; it

is in computational complexity—the computations expand exponentially with

the number of transmission lines. The three examples they present involve only

two or four transmission lines and about 10 to 15 other parameters. For these

examples the upper bounds are not unreasonably loose, being roughly two to

four times the actual delay time measures, the latter being computed through

some standard numerical techniques. All this may prove to be quite important

whenever computations remain manageable.

In summary, this book addresses some currently critical problems in electri-

cal engineering, but it demands a knowledge of modern theories of differential

equations. It will probably be of greatest interest to mathematicians seeking

applications to current technologies, but here too some knowledge of electronic

devices and circuits will render the book more accessible. The powerful meth-

ods of functional analysis can help to solve some incipient and complicated

problems in integrated-circuits design. This book may be a harbinger of much

more.
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