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The book is a translation by Roger Cooke from the Russian original published

in Moscow in 1975 with the title Essays on the history of the theory of functions

of a real variable.

The central concern of the book is with real functions of a real variable,
but in places it leads into some aspects of functional analysis. For example,

consideration is given to the function spaces L? and Lp and to work of W. H.

Young on the notion of conjugate pairs of classes of functions such that the

product of two functions /, g, one from each of the two classes of a pair,
is integrable in the sense of Lebesgue. Medvedev points out that in a work by

Burkill, developing the ideas of Young, there was an error, the correction of

which by Birnbaum and Orlicz accompanied the creation of Orlicz spaces.
In the first chapter of his book Medvedev regards the theory of functions as

a subject to be distinguished, although not very precisely, from what he refers

to as classical analysis.   He asserts that if from classical analysis is excluded



BOOK REVIEWS 361

the theory of differential equations and the theory of functions of a complex

variable, then the theory of functions of a real variable can be viewed as a

larger, deeper, and more general version of classical analysis. An important

part of the difference is that point set theory is regarded as belonging to the

theory of functions but not to classical analysis.

In the second chapter, on the history of the function concept, Medvedev

touches briefly on what he sees as the notion of functional dependence in ancient

times and the Middle Ages. He then passes quickly to the seventeenth century

and to what he called the Eulerian period, from the work of John Bernoulli

in 1718, relying not only on some of the writings of Newton but also on the

investigations of Leibniz, James Bernoulli, and others, to the publication in 1822

of Fourier's Théorie analytique de la chaleur. Medvedev goes into careful detail

in discussing whether the concepts of function due to Euler, Condorcet, Lacroix,

and Fourier were, in fact, beginning to take the shape of what has come to be

known as the Dirichlet definition of function and had in that respect reached a

culmination in the writing of Fourier. Medvedev states (on pages 48 and 49)

that it seems to him that the Dirichlet notion of functional dependence lies at
the foundation of Fourier's entire investigation.

In this discussion Medvedev refers to the views of Hawkins as expressed in

the latter's book, Lebesgue 's theory of integration. Medvedev writes: "Hawkins's

arguments as to the concept of a function in the eighteenth and early nineteenth

centuries, especially regarding Fourier, cannot be considered convincing." The

author's arguments and statements with reference to what Hawkins had to say

are interesting, but he is moderate in taking issue with Hawkins. I also found

interesting the following general observations on page 53 in Medvedev's book.

It is difficult to say what degree of "arbitrariness" in a functional cor-
respondence Fourier actually had in mind in his writings. If we compare

these writings with the "Dirichlet definition", we cannot help noticing not

only their external similarity, but also that Fourier's definition, taken lit-
erally, is significantly more general than that of Dirichlet.

... the general concepts introduced by mathematicians are almost always

rather vague and elusive, and only gradually acquire more or less sharp

boundary lines, and the more general the concept the greater its vagueness

and the longer the vagueness persists. This is not a defect, rather a virtue

of general concepts. It is the vagueness and flexibility of new concepts that

opens a wide field of application to them. Such was precisely the case with

Fourier's definition of a functional correspondence.

Also in the second chapter are discussions of definitions of functions as given

by Lobachevskii (in 1834) and by Dirichlet (in 1837). Lobachevskii's definition
implies continuity of the function: "The general concept of a function requires

that a function of x be defined as a number given for each x and varying

gradually with x." Medvedev quotes from Dirichlet's paper of 1837 (the one

that gave rise to the widespread assignment to Dirichlet of authorship of the

general definition of a function used in the later decades of the nineteenth cen-

tury and on into the twentieth century). In the paper Dirichlet speaks only

about continuous functions, but he does stress that the law by which values are

assigned to f(x), apart from requiring the continuous variation of f(x) as x
varies, can be completely arbitrary. Dirichlet was fully aware of the existence of
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discontinuous functions and also of the fact that he was not the first to empha-

size the arbitrariness of the assignment of values to f(x). Medvedev ascribes to

Hankel responsibility for the fact that the general concept of a function of one

real variable is mostly connected with the name of Dirichlet. Medvedev states

that in a paper of 1870 Hankel brought into general use the phrase "definition

of a function according to Dirichlet".

Late in Chapter 2 Medvedev comes to the concept of a function as a corre-

spondence that transforms each element of a certain abstract set into a definite

element of another (possibly the same) abstract set. He writes:

For the argument and the value of a function to be regarded as elements

of abstract sets, it is necessary that such sets become an object of study.

They became such in the abstract set theory created by Cantor, Dedekind,

and others.  ...  Evidently this definition of a function was first stated by

Dedekind in 1887.
The citation here is to Dedekind's Was sind und was sollen die Zahlen"! The
same general concept of a function appears in a work of Cantor published in

1895-97, apparently as his own idea, independently of Dedekind.

Chapter 3 is about various kinds of convergence of infinite series or sequences

of functions: various types of uniform convergence, convergence almost every-

where, in measure, some of the types of convergence that are important in

functional analysis, and still other types. This is the longest chapter in the book

and the most detailed. It is not feasible to review more than a few of the sections

of the chapter.
The emergence of the notion of uniform convergence is traced by the author,

starting from the erroneous assertion made by Cauchy in his book of 1821,

Analyse algébrique, to the effect that the function defined on an interval by

an everywhere convergence series of continuous functions is itself continuous

on the interval. As is well known, Abel observed that a counterexample is

provided by a certain convergent trigonometric series of sines, the sum of which

is discontinuous at odd multiples of n. Medvedev asserts that the first works

with which the concept of uniform convergence is usually linked are a paper of

Ph. L. Seidel in 1847 and one by Stokes in 1848. Seidel did not define uniform
convergence. Instead, he introduced the notion of arbitrarily slow convergence at

a point. Given a series of continuous functions, convergent in a neighborhood

of a point Xo, with R„(x) the sum at x of the remainder after n terms,

Seidel distinguished two cases: (i) there is some interval enclosing xç, such

that |i?«(x)| can be made less than any given positive number simultaneously

for every x in the interval for all sufficiently large n ; or (ii) this cannot be

accomplished, no matter how short the interval is made. Seidel showed that

in the first case the sum of the series is continuous at Xq but that if the sum

function has a jump discontinuity at Xo, the second case must prevail. In the

second case Seidel called the convergence at xo arbitrarily slow. He did not

actually use the name uniform convergence for the first case.

Seidel's paper went unnoticed for some time. It was published in the Sitzungs-

berichte der Bayerische Akademie der Wissenschaften. Not until 1870 did math-

ematicians begin to refer to Seidel's paper. Medvedev says that the work of

Stokes remained unknown even longer. He discusses the work of Stokes in

connection with a notion that Medvedev calls generalized uniform conver-

gence, basing his discussion on a paper about Stokes published by Hardy in the
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Proceedings of the Cambridge Philosophical Society, 1918.
Cauchy corrected his error of 1821 in a paper published in 1853. He did not

use the name uniform convergence, but he explicitly imposed on the convergent

sequence of continuous functions the inequality condition on remainders that

characterizes uniform convergence. This paper apparently went unnoticed at the

time. Pringsheim, in his report on the foundations of general function theory

in the German encyclopedia of the mathematical sciences (Vol. II, Al), asserts

that the term uniform convergence is due to Weierstrass, who introduced it in
his lectures.

Medvedev discusses many other contributions to the study of uniform conver-

gence, both in its usual sense and in modified senses, with reference to continuity

of the limit function and also with reference to the legitimacy of term-by-term

differentiation or integration of a series. There were important contributions by

Arzelà, Bendixson, Dini, Osgood, and Hobson. There is a type of convergence

now known as quasi-uniform convergence. This terminology is due to Borel,

but the concept is due to Arzelà, who called it convergenza uniforme a tratti and

used it in an important long paper published in Bologna in 1899-1900.

In connection with convergence in measure, Medvedev discusses works by

Arzelà, Egorov, Lebesgue, and F. Riesz.

Prior to his discussion of the function class L? and the Riesz-Fischer theo-
rem, Medvedev dwells at some length on work by Harnack published in 1880.

Harnack studied the mean-square convergence of the Fourier series of a Rie-

mann integrable function f(x), aiming to prove that the partial sums of the

Fourier series converge in mean-square to a function <p(x) such that the inte-
gral (over the basic interval) of the squared difference between f(x) and (p(x)

is zero. There were many things wrong with the attempted proof, of course, as

Harnack soon recognized and tried to cope with.

In connection with §3.5 of Chapter 3, I must point out a misstatement on

page 115. Medvedev asserts that in Fréchet's thesis (published in 1906) he

proved that for every measurable and almost everywhere finite function f{x)

defined on an interval there exists a sequence of continuous functions converging

to f(x) almost everywhere. This is an inaccurate attribution. In Fréchet's thesis

there is the following theorem: "Each function f(x) in the Baire classification

can be considered as the limit of a sequence of polynomials p„ (x) converging to

f(x) except on a set of measure zero." The theorem mentioned by Medvedev as

being in Fréchet's thesis is not there and (as far as is known) was never published

by Fréchet. However, the theorem is attributed to Fréchet by Natanson in the

English translation from Russian of his book, Theory of functions of a real

variable (1955). The theorem is true, to be sure. An account of the relationship

of Fréchet and Lebesgue to the theorem is explained in a paper that I published

in joint authorship with Pierre Dugac after I discovered traces of related ideas in

letters from Lebesgue to Fréchet in the Archives of the Académie des Sciences

in Paris. See Quatre lettres de Lebesgue à Fréchet in Rev. Hist. Sei., 1981 34/2.

See, in particular, pages 166-167 of this paper. In one of Lebesgue's letters

to Fréchet in 1905, he uses the theorem from Fréchet's thesis and his own

explanation of how, for a given measurable function f(x), there must exist

a function of Baire class at most 2 that is equal to f(x) almost everywhere.

From this follows the theorem attributed to Fréchet.

The third chapter concludes with an eleven-page section on the Baire
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classification of functions as well as on the long paper of Lebesgue (in 1905) on

analytically representable functions. Baire's work, starting in 1897, was pub-

lished at length in his thesis in 1899. Baire proved that the limit of a sequence

of Baire functions that converges at all points is a Baire function and that the

cardinality of the class of Baire functions is the cardinality of the continuum.

Before 1904, however, it was not known if there actually existed Baire functions

of classes greater than 2. In 1904 Lebesgue proved the existence of functions

in every Baire class.

Chapter 4, entitled The derivative and the integral in their historical connec-

tion, begins with mention of the method of exhaustion in Greek mathematics

and of what Medvedev calls differential methods in the work of Babylonian

astronomers in the second century B.C. The author passes rapidly over what

he refers to as the rudiments of integral and differential methods in ancient

and medieval times, observing that the sorts of methods that were applied to

different classes of problems were not connected with each other in any way. A

major theme of this chapter is the change over time in the status of the integral

concept in relation to that of differentiation; the integral concept is sometimes

primary, at other times secondary.
In his brief account of Galileo's treatment of uniformly accelerated motion,

culminating (in modern notation) in the formula

x = J gtdt = jgt2

for the distance traversed by a body in time t with constant acceleration g,

Medvedev declares that this is the first example of an indefinite integral in the

history of science. In dealing (very briefly) with the works of Gregory and Bar-

row, Medvedev asserts that "they actually established the mutually inverse char-

acter of the concepts of derivative and indefinite integral." In this connection

Medvedev cites the three-volume History of mathematics from ancient times to

the beginning of the nineteenth century, edited by A. P. Yuskevich, printed (in

Russian) in Moscow, 1970-72. But then Medvedev continues: "Nevertheless

neither Gregory nor Barrow became the creator of the differential and integral

calculus, first of all because their notions were too geometric or kinematic and

second because they were insufficiently algorithmic."

In §4.3, in writing about the analysis of Newton and Leibniz, Medvedev re-

ports that Kolmogorov, in a talk given on the 250th anniversary of the death

of Leibniz, said that the fundamental idea that guided Newton in his scientific

activity was that of the mathematization of natural science. In the mathemati-

zation of motion the operation of differentiation had to come to the fore, and

the appropriate idea of the integral became that of the indefinite integral. An-

other mathematical apparatus was needed for convenience in the description of

motion. That apparatus—algebra—was at hand from its previous development,

mainly for use in the solution of equations. Medvedev states that "it is in al-

gebra that the notion of a variable quantity arises." At this point he introduces

(perhaps not surprisingly at the time his book was written) a quotation from

F. Engels's The dielectics of nature: "The turning point in mathematics was

Descartes's variable magnitude. With that came motion and hence dielectics in

mathematics, and at once also of necessity the differential and integral calculus."

(The emphasis is that of Medvedev's book.)
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As Chapter 4 continues, Medvedev points out that during the nineteenth

century the concepts of derivative and integral began to diverge more and more

from the scheme of analysis envisaged as the continuing development of dif-

ferential and integral calculus with enlargement of the body of transcendental

functions. Medvedev writes (on page 181):

The theoretically beautiful method of obtaining the value of a definite

integral by the Newton-Leibniz formula soon exhausted its possibilities

even in the one-dimensional case, so that Luzin could write with some

justice in 1933 that for 150 years after the death of Euler, mathematicians

were unable to make any breach in the ring of integrations he had forged.

It should be noted that by the Newton-Leibniz formula Medvedev means the

formula

/ f'(x)dx = f(b)-f(a),
Ja

even though he says of it in a footnote that Newton stated the formula explicitly

only in geometric disguise and that it does not seem to occur explicitly in the

writings of Leibniz. However, Medvedev says, the formula follows easily from

the approach of Leibniz to integration as the inverse of differentiation and his

explicit mention of the need for an additive constant.

A reversal of the order of emphasis on differentiation and integration came

in 1823 with Cauchy's presentation of the concept of the definite integral as

the limit of a sum, followed by his demonstration that a definite integral with

a variable upper limit furnishes a primitive of a given continuous function

f(x)—that is, that

¿if/»*-/«■
Riemann's definition of the definite integral led to the study of integration

in ways that were not connected with differentiation. There were studies of

differentiation in its own right, such as much of the important work of Dini

on the four dérivâtes of a function at a point. In 1881 Vol terra proved the

existence of a function f(x) defined on [0, 1] having a derivative f'(x) at

each point and such that f (x) is bounded but not Riemann integrable. Thus

the primitive of f'(x) cannot be reconstructed by using Riemann's integral.

On the face of it, this appeared to destroy the validity of the fundamental

notion that differentiation and integration are mutually inverse operations. It

was, therefore, one of the triumphs of Lebesgue's thesis that in it he was able to

prove that, for a function f(x) with a bounded derivative (as in the foregoing

situation dealt with by Volterra), f'{x) is integrable in the sense of Lebesgue

and the integral of /'(<) over the interval [0, jc] is a primitive of f'(x).
Medvedev also calls attention to another achievement of Lebesgue that is

interesting and, I believe, not well known. Lebesgue proved, without any use of

integration, that every continuous function defined on a closed interval has a

primitive defined on that interval. The proof is not complicated. It is in a short

paper appearing in volume 29 (1905) of the Bulletin des sciences mathématiques.

The last part of Chapter 4 deals with the extension of Lebesgue's theory of

integration to functions of several real variables defined in Euclidean space and
to some of the far-reaching generalizations of that theory that arose out of ideas
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of Stieltjes, Radon, Fréchet, Nikodym, Kolmogorov, and Caratheodory.

The title of the fifth and final chapter is Nondifferentiable continuous func-

tions. Actually, quite a bit of the narrative is about how mathematicians gradu-

ally moved away from their tendency to think that continuous functions were,

in the main, differentiable. The practice and experience of the seventeenth and

eighteenth centuries had led mathematicians to expect that every function had

a derivative except at a few isolated exceptional points. Instead of inquiring

about the existence of a derivative, they set out to calculate it. After a brief

introductory section Medvedev discusses a paper of 1806 by Ampère about the

notion of a derivative. This paper has sometimes been misinterpreted as hav-

ing the intent of proving that an arbitrary continuous function necessarily has

a derivative. Medvedev says that what Ampère attempted was "to prove that

every function that is analytic in the sense of Lagrange has a derivative every-

where except for individual isolated values of the variable." I think that a more
satisfactory account of Ampere's paper is given by Grabiner in her book on The

origins ofCauchy's rigorous calculus.

Medvedev writes that "In the 1870s a crushing blow was delivered to the

faith of mathematicians that a continuous function necessarily has a derivative,
though perhaps not everywhere_" In 1870 Hankel, using the method of con-

densation of singularities, obtained the first examples of continuous functions

having no derivatives on the everywhere dense set of rational points. Weier-

strass in 1872 presented to the Berlin Academy of Sciences his now well-known

example of a continuous and nowhere differentiable function. It was not actu-

ally published until 1875. Meanwhile, in 1873 Darboux had presented another
such example at a meeting of the French Mathematical Society.

The chapter closes with an interesting commentary on how a point of view

was reversed by the separately published papers of Banach and S. Mazurkiewicz

in 1931. In these papers it was shown that the set of continuous but nondif-

ferentiable functions is a set of the second category in the Banach space of

all continuous functions, while the differentiable functions form only a set of

first category in that space. Thus the earlier view of regarding nondifferentiable

functions as pathological had to be altered. (Hermite had declared "I turn away

in horror and disgust from this growing plague of nondifferentiable functions.")

It now appeared that among all continuous functions the normal thing was for

a specimen to be nondifferentiable, while the differentiable functions formed a

meager lot, abnormal by comparison with the general run of continuous func-
tions.

I enjoyed the book and learned a great deal from it. Having the English trans-

lation is very useful. The bibliography would be more useful, in my opinion,

if it provided the full citation of the original journal publication of a paper,

as well as the location of the paper in the author's collected works, instead of

giving just the title and the original year (but not place) of publication, along

with a full reference to the paper's location in the collected works. In the book,

the references to many papers are handled in this less desirable way, even when

the journals in question are among the standard and commonly available ones.

There are numerous references to work that, unfortunately for some of us, is
available only in Russian.

Medvedev's book contains useful insights. In some places the narrative is a
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bit wordy and rambling. That, however, is only a minor criticism of a valuable

work of scholarship.
Angus E. Taylor

University of California at Berkeley
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An introduction to harmonic analysis on semisimple Lie groups, by V. S.
Varadarajan. Cambridge Studies in Advanced Math., vol. 16, Cambridge

Univ. Press, Cambridge and New York, 1989, x+316 pp., $69.50. ISBN
0-521-34156-6

Semisimple Lie groups are symmetry groups that occur in surprisingly many

situations. They are the isometry groups of Riemannian symmetric spaces,
the analytic automorphism groups of bounded symmetric domains, the groups

from which Eisenstein series and cusp forms are constructed in analytic number
theory, the conformai groups of general relativity, the groups whose represen-

tations correspond to elementary particles,.... They should form part of the

basic toolkit of every modern mathematician; but, in fact, the theory is relatively

unknown because it is not easily accessible.

The reason for the inaccessibility of semisimple Lie group theory is clear to

anyone who has tried to learn or to teach it: One must navigate a path too

complicated to follow without a good vehicle and a good map. But it's well

worth the effort: that path leads to a breathtaking mathematical vista.

Varadarajan's book Harmonic analysis on semisimple Lie groups is the best
introduction to harmonic analysis on semisimple Lie groups from the analytic

viewpoint. It is neither a textbook nor a monograph in the usual sense, but

rather a sort of pedagogic discourse that exposes the reader to semisimple Lie

theory in a useful and informative way. After reading this book, one can either

stop with a pretty good understanding of the theory and its role in harmonic

analysis (if not in geometry, probability, or physics), or one can continue to
study the theory with a reasonable background and an excellent sense of direc-

tion. Also, and this is no small matter, the book is a pleasure to read.

There are other important viewpoints for harmonic analysis on semisimple

Lie groups and their homogeneous spaces. One has a viewpoint oriented toward
linear algebraic groups that includes the theory of p-adic semisimple groups, a

viewpoint oriented toward number theory that includes automorphic represen-

tation theory, a viewpoint of Riemannian geometry and symmetric spaces, a
viewpoint of particle physics, and their various mixtures. But life is too short

to discuss those here.
Varadarajan's book begins with an interesting introduction to harmonic anal-

ysis, with reference to classical Fourier analysis and several accessible appli-

cations. Then the book starts in a serious way with a quick sketch of har-

monic analysis on compact groups. The Peter-Weyl Theorem, which extends

the method of harmonic analysis from Fourier development of periodic func-
tions of one variable to functions on general compact topological groups, is


