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Prentice-Hall, Engelwood Cliffs, NJ, 1974; Springer, New York, 1984.
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My inclination now would be to have a hypothetical student start with this book

of Varadarajan, perhaps supplementing the background material with the first

three chapters of Sugiura (for an analyst) or the book of Humphreys (for an

algebraist), in an independent reading course. Then I would want the student to

take a Lie groups course at the level of Varadarajan's text cited above. Finally

this student should study material from Helgason, Knapp, Vogan, Wallach,

and/or Warner, depending on his level, background, and interests.
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The theory of numerical methods for nonlinear hyperbolic partial differen-

tial equations, or conservation laws, has become one of the great successes of

numerical analysis. The development of schemes for nonlinear hyperbolic equa-

tions requires an understanding of both numerical analysis and the theory of

nonlinear hyperbolic equations. By using knowledge of the structure of the so-

lutions of these equations, methods have been developed that compute highly

accurate solutions.

The development of the theory of nonlinear hyperbolic partial differential

equations in the last fifty years has been stimulated by the growth in appli-

cations such as supersonic aerodynamics, thermonuclear explosions, and oil

recovery. In each of these applications the differential equations express the

conservation of mass, momentum, and other quantities. The increased power

of numerical computations has enabled researchers to study ever more complex

physical problems governed by conservation laws. A better understanding of

the solutions of the differential equations was needed to develop schemes that

would compute accurate solutions. Usually the computations of physical phe-

nomena have been beyond the pale of the theory, serving to motivate further

work in the theory.
The theory of conservation laws is a rich part of mathematics. One of the

best introductions to this theory is the book by Lax [2]. The basic difficulty with

nonlinear hyperbolic partial differential equations is that the solutions develop

singularities, especially discontinuities, which are usually called shock waves or
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shocks. With the development of these discontinuous solutions there is usually

the potential for nonuniqueness of the solutions. The mathematical problem
is to introduce restrictions on the class of solutions so that a unique solution
exists and so that this solution corresponds to physical phenomena. To restrict

the set of solutions, it is required that solutions must be weak solutions, that

is, they must be consistent with an integral form of the equations. The integral

form is obtained by multiplying the differential equation by a test function and

then using integration by parts to remove all differentiation from the solution

of the differential equation. However, even among the class of weak solutions,

the solution is not uniquely determined.

For particular nonlinear hyperbolic systems arising in applications, there usu-

ally are physical principles, such as the second law of thermodynamics [1], that

select a unique solution from among the weak solutions. In general, the use of

similar "entropy conditions" supplies the principle that selects a unique solution

from among all weak solutions.

The possibility of nonunique solutions presents difficulties for the develop-

ment of numerical methods for computing solutions. Indeed, it is easy to con-

struct finite difference schemes for conservation laws that compute incorrect

solutions, i.e., solutions not satisfying the correct entropy condition or solu-

tions converging to solutions that are not weak solutions. The basic result on

the convergence of solutions of schemes for these equations is the Lax-Wendroff

Theorem [3], which states that if a scheme is consistent and conservative, and

if the solutions converge as the grid is refined, then the solutions converge to

a weak solution of the differential equation. Basically, a conservative scheme

is a scheme that satisfies a conservation law analogous to that of the partial
differential equation.

The development of the theory of conservation laws for multidimensional

problems is an area needing more work. Most of the finite difference schemes

currently in use for two-dimensional and three-dimensional computations are

simple extensions of one-dimensional schemes to multidimensional problems.

These schemes have been quite successful in a wide range of computations, but

advances in the mathematical theory are required before better schemes can be

developed.
The book by Randall LeVeque is among the first that makes the material

in this area accessible to first and second year graduate students in the math-

ematical sciences. It should be an excellent introduction to this topic for any

researcher in the mathematical sciences.

The first half of the book is devoted to the mathematical theory of these

equations. There are extensive connections with systems arising from physi-

cal applications, especially the Euler equations of fluid flow, the shallow water

equations, and the equations of isentropic flow. The book begins with a dis-

cussion of linear hyperbolic equations and systems, proceeds to a discussion

of nonlinear scalar equations, and then to a discussion of systems. Movement

among the topics is smooth and easy.

There is a thorough discussion of the solution of Riemann problems for the

different systems. A Riemann problem is one in which the initial data consists

of two constant states, one state on the positive real axis and the other on the

negative real axis. In keeping with the aim of the book, no general existence

theorems for the solutions to the nonlinear partial differential equations are
given.
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The second half of the book concerns the numerical methods. This begins,

as does the first part, with theory for schemes for linear hyperbolic equations

followed by the discussion of nonlinear scalar equations.

The chief difficulty associated with constructing schemes for conservation

laws is that the schemes must compute correct solutions and also be accurate.

The accuracy is especially important near shock waves and other discontinuities.

There are several approaches to the construction of schemes. The simplest

methods use "artificial viscosity" to smooth out the discontinuities. It is, how-

ever, very difficult to design a smoothing that does not degrade the overall ac-

curacy of the solution. Typically, the choice is between having shocks that are

smeared and having oscillations near the shocks. In general, higher-order accu-

rate finite difference schemes for linear hyperbolic partial differential equations

generate oscillations near discontinuities and other places where there is diffi-

culty in resolving the solution. These oscillations also occur with schemes for

nonlinear hyperbolic equations and cause great difficulty with the jump condi-

tions relating the solutions on either side of the discontinuity.

There are several techniques used to modify schemes from linear equations

to nonlinear equations. LeVeque discusses quite thoroughly all the currently

useful methods. These include the Godunov methods, flux limiting, and slope

limiting. The basic Godunov method is illustrative of one that relies heavily

on the partial differential equation theory. In Godunov's method, the discrete

solution is regarded as a piecewise-constant function, and the exact solution

of the Riemann problem at each discontinuity is used to determine the discrete

solution at the next time step. Godunov's method is limited to those systems for

which the Riemann problem can be solved. For other systems, and for greater

efficiency in general, the exact solution of the Riemann problem can be replaced

by the solution to a Riemann problem approximating the exact problem.

Another approach, especially designed to increase the accuracy, is to re-

place the piecewise-constant solution by piecewise-linear or other piecewise-

polynomial solutions. For these approaches, the analog of the Riemann problem

cannot be solved exactly, and other approximations are used.

In recent years, several new classes of schemes have been introduced that seek

to reduce oscillations without sacrificing accuracy, e.g., the ENO or essentially
nonoscillatory schemes. These schemes perform quite well in computation, how-

ever, the theoretical analysis of these schemes is incomplete. LeVeque gives a

nice discussion of the basic ideas of several of these methods.

This book is based on lecture notes of the author and should serve well as a

text for a graduate course. The mathematical results that are proved, such as

the basic convergence theorems, are well chosen to provide insight. There are

many interesting exercises that serve to illuminate and expand on the text, and

there are also many well-drawn figures.
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An introduction to multigrid methods, by P. Wesseling. Wiley, New York, 1992,
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The term multigrid refers to a numerical technique that uses a family of grids

of differing mesh sizes to discretize and solve continuum problems, most notably

partial differential equations. The basic idea is to use a few iterations of an

inexpensive relaxation scheme (e.g., Gauss-Seidel) on each grid level to attenuate

error components of the approximation that vary on a scale comparable to the

associated mesh size. These relaxations are performed for equations defined on

each grid that approximate a suitable finest-grid error equation (e.g., the residual

equation for linear problems), and each result is interpolated to the finest grid to

correct the current approximation there. The attraction of these methods is that

they are often optimal in the sense that they can produce a result whose accuracy

is comparable to the finest-grid discretization error at a cost equivalent to a

few finest-grid relaxations. This optimality can often be obtained over a wide

range of problem difficulties, including nonselfadjoint operators, nonlinearities,

various discontinuities and singularities, and local refinement.
The first known multigrid scheme was developed by Southwell [15] in 1935

for equations of elasticity. Understandably, it was primitive by current stan-

dards in its rather awkward use of just two discretization levels. Multigrid

schemes using more than two levels were apparently first devised in the 1960s

for Poisson's equation by Fedorenko [6] and for more general elliptic equations

by Bakhvalov [1], although these methods were still too ineffective to attract

much attention. The modern era of truly efficient multigrid techniques was pi-

oneered by Brandt in the 1970s [2, 3]. Since then, multigrid has become the

method of choice for a wide range of problems; and its generalizations, referred

to by such terms as multilevel, multiscale, and multiresolution, have begun to

invade many diverse disciplines, including aerodynamics, chemistry, civil engi-

neering, economics, geology, image processing, and statistical physics.

Expository publications have lagged well behind technological progress in

the multigrid discipline. For several years, the seminal paper by Brandt [3] in

1977 served as the main resource for obtaining an understanding of the prac-

tical aspects of multigrid methodology. It contained many of the basic tools

and principles that now constitute the core of the discipline, although most

of the topics were naturally treated in brief. The "Yellow Book" [8] appeared
in 1982 and quickly became the most popular general resource of that decade.


