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We will first discuss potential theory in one complex variable and then the

higher-dimensional pluripotential theory.

At first, recall the concept of a harmonic function.

Holomorphic functions in the complex plane satisfy the Cauchy Riemann

equation df/d'z — 0. One sees immediately that the two-dimensional Lapla-
cian

d2/dx2 + d2/dy2 =: A = 4d/dzd/dz.

Hence holomorphic functions are also solutions of the homogeneous Laplace

equation. In fact both the real and imaginary parts of a holomorphic function

are solutions to the Laplace equation. In general, in any dimension, the solutions

of the homogeneous Laplace equation are called harmonic functions. A special

property in one complex dimension is that the real-valued harmonic functions

on the complex plane are the real parts of holomorphic functions.

In R3 the solutions of the homogeneous Laplace equation

d2u/dx2 + d2u/dy2 + d2u/dz2 = 0

are called harmonic functions or Newtonian potentials. Their gradient is a vec-

torfield called force, and specific examples are given by gravitational potential

and gravitational force or electric potential and electric force. The basic example
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of a Newtonian potential in R3 is 1/||jc - xo\\ corresponding to a point mass

or point charge at Xq . Then the force, given by the gradient of the potential,

decays like one over square of the distance.
The same terminology is carried over to C = K2 .
In M2 the solutions of the homogeneous Laplace equation are called loga-

rithmic potentials. Now the basic example is 27ilog||x - Xo|| corresponding to

a "unit point mass" at Xq . In this case the "force", given by the gradient of the

potential, decays like one over distance.

The function log||x - Xq\\ is harmonic when x ^ xq and has a singularity at

Xq . Including xq in the domain of the function, log||x - xq\\ is said rather to

be subharmonic for all x . Similarly one calls the extension of -log||x -x0\\ to

the whole complex plane superharmonic. A similar remark can be made in M.3,

in fact, just as well in Rn , n > 3, but this is not our concern here.

Generalizing this, one is naturally lead to subharmonic functions from har-

monic functions when one considers masses spread over a region rather than

point masses.

Subharmonic functions were introduced by F. Riesz in 1922. A common

way to define a subharmonic function in general is by requiring that whenever

a harmonic function is larger than a subharmonic function on the boundary

of a region, the harmonic function is larger than the subharmonic function on

the interior as well. In addition, one requires the technical hypothesis that the

function be upper semicontinuous and can take values in R U {-oo} but not

identically -oc . The basic properties of subharmonic functions are discussed

clearly in Chapter 2 of Klimek's book.
The Fundamental Theorem of F. Riesz is that a subharmonic function /

locally is the convolution of its Laplacian \i with the logarithmic potential of
zero, log||x|| (Fundamental solution), up to a harmonic addition h ,

fix) = ¡j f{x - y) * loglMI dn{y) + h(x).

Hence it is not unreasonable to say that a subharmonic function is a potential
of its Laplacian.

Subharmonic functions were introduced in order to solve the Dirichlet prob-

lem in a rigorous way: Find a harmonic function in a region with given values
at the boundary. This is carried out in Chapter 2.

Notice that harmonic functions have a certain special position among all

subharmonic functions. We say that a subharmonic function is maximal if

whenever a subharmonic function lies under it on the boundary of a region

this subharmonic function stays under in the interior as well. The maximal

subharmonic functions are also precisely those subharmonic functions </> for
which Atp = 0.

This point of view is useful for solving the Dirichlet problem using the Perron
method and is the point of view adopted in Klimek's book: To find a function

with given boundary values which satisfies the Laplace equation in the interior,

take the maximum of the subharmonic functions with boundary value below

the given one. Hence, the solution to the Dirichlet problem is the maximal
subharmonic function with the given boundary values.

I will next turn to the higher-dimensional complex analysis. This is closely

related to the one variable theory—one just considers holomorphic functions
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of more than one complex variable and requires that they are holomorphic in
each variable depending holomorphically on additional parameters.

There are some new phenomena that sets the theory of higher-dimensional
complex analysis apart from the theory of one complex variable. The main

cause of this is the remarkable discovery by Hartogs (1874-1943) in 1905 that

holomorphic functions of more than one variable cannot have isolated singu-

larities, such as 1/z, in one variable. This follows from the Cauchy Integral
formula after a moment's thought: To remove a singularity at (0, 0) use the

formula

J\r,\ = l     z-n

The second chapter of the book also deals with this phenomenon. An even

more remarkable version of this phenomenon is that holomorphic functions

extend to the outside of certain nonconvex regions. The basic examples are

//-shaped Hartogs figures in C2. These are of the form

H = {\z\ < 1 +e,  \w\ < e} U{1 + e > \z\ > 1 -e,  |tu|<l}.

This time the holomorphic functions on H extend to the convex hull using

the exact same integral as before.

Hartogs analyzed this phenomenon. He considered a slight generalization of

this basic Hartogs figure, namely, the Hartogs domains

H={(z,w)eC2;  zeU,  \w\<e-*(z)}.

He showed that holomorphic functions on these generalized //'s extend beyond

the boundary precisely when the function <f> fails to be a Hartogs function.

Loosely speaking Hartogs functions are the lattice generated by the functions

c \og\f\, where c > 0 and / is holomorphic. A Hartogs function is the same

as a subharmonic function—but this was about 15 years before subharmonic

functions were invented—and, anyway, this equivalence was not proved until

1956 by Bremermann.

This brought the topic of subharmonic functions into the theory of several

complex variables.

These discoveries showed that in higher dimension not all domains are natu-

ral domains of definition for holomorphic functions. This is because for some

domains all holomorphic functions extend to a given strictly larger domain. It

is customary to call all domains that are natural domains of definition for holo-

morphic functions domains of holomorphy. Hartogs's discovery then showed

that Hartogs domains in C2 are domains of holomorphy precisely when <j> is

a Hartogs function/subharmonic.

Notice that <f> can be interpreted as -log(á) on the base U = U * 0, where

ô denotes the distance from a point to the boundary in the w-direction.

It took the genius of Oka to see how this could be used for general domains.
The Hartogs domains are, after all, rather special.

He proved in 1942 that a general domain U in C2 is a domain of holomor-

phy if and only if the function -log(dist) is subharmonic on each complex line.

Here dist denotes the Euclidean distance to the boundary of U. Oka called such

functions pseudoconvex. This class of functions was simultaneously introduced

by Lelong, who called them plurisubharmonic. So to be more precise, an upper
semicontinuous function whose restriction to any complex line is subharmonic
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is called plurisubharmonic. The terminology of Lelong has prevailed, so these

functions are nowadays called plurisubharmonic.

Lelong's motivation to introduce the plurisubharmonic functions is rooted in

a similar way in the Hartogs extension phenomenon. Levi (1910) observed that

a smoothly bounded strongly convex domain in C2 is a domain of holomorphy.

Such a domain has a defining function which is strongly convex. The property

of being a domain of holomorphy is invariant under biholomorphic maps. The

biholomorphic image of a strongly convex domain, therefore, is a domain of

holomorphy. Carrying over the convex defining function gives us a plurisubhar-

monic defining function. Lelong's motivation for introducing plurisubharmonic

functions was that they could be used to describe in this way a complex analytic

version of convexity. However, instead of using these functions to study the

Levi problem, Lelong's main use was based on the theorem that a function u is

plurisubharmonic if and only if the current ddcu is positive and closed. (Here

dc is the complex conjugate version of d.) Currents are discussed in Chapter

3.
Actually, the main part of Oka's aforementioned work reduced to showing

that a smoothly bounded domain which locally could be made strongly convex

by a holomorphic change of coordinates was a domain of holomorphy. This

work was very deep.

The first part of the book contains the first two chapters. In addition to the

introductory material already mentioned, the second chapter also contains a

careful discussion of plurisubharmonic functions.

Once plurisubharmonic functions were introduced by necessity, it was quite

natural to ask whether they could be used in a way similar to subharmonic func-

tions. So going back to the original reason for studying subharmonic functions,

one can ask whether some sort of Dirichlet problem can be solved even for a

simple domain like a ball. Indeed this was done by Bremermann in the 1950s.

The problem is what happens, for instance, when one applies the Perron method

in this case: Let / be a function on the boundary of a domain. Consider the

supremum of all plurisubharmonic functions with values less than / on the

boundary. One can call this supremum the solution of the Dirichlet problem.

Bremermann showed that this is the maximal plurisubharmonic function with

value / on the boundary: In analogy with one complex variable we say that a

plurisubharmonic function is maximal if whenever a plurisubharmonic function

lies under it on the boundary of a region this plurisubharmonic function stays

under in the interior as well. As already indicated above in the discussion of

the one variable case, Klimek's main objects are the maximal plurisubharmonic
functions. These are introduced in Chapter 3.

Note that although one can think of the maximal plurisubharmonic functions

as the closest possible to the Real Part of a holomorphic function, they might be

far from that. For example, max{log(|z|2 + |uj|2)} is maximal plurisubharmonic
away from (0,0).

In analogy with one complex variable one can call a plurisubharmonic func-

tion <j> a pluripotential, but one needs to decide of what it should be the pluripo-

tential. For this one can seek a higher-dimensional version D of the Laplacian

and then say that </> is the pluripotential of Dtp. Then one can develop a

pluripotential theory.
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It turns out that solutions to the Dirichlet problem above are under sufficient
regularity conditions solutions of (ddcu)n := ddcu A ddc A • •• A ddcu = 0.

This is the main topic of Chapter 4. The rough idea is that if the function u is

harmonic in at least one complex direction, it should be maximal and (ddcu)n —

0. Call this the «-dimensional Laplacian. If Du := (ddcu)n = g, u is called

a pluripotential of g. This operator D is actually rather called the complex

Monge Ampere operator (and not the Laplacian) because of its similarity with

the real Monge Ampere operator. (While D is given by the determinant of

the complex Hessian {d2/dz¡d~Zju} of u, the real Monge Ampere operator is

the determinant of the real Hessian.) The maximal plurisubharmonic functions

are precisely those plurisubharmonic functions 4> f°r which (ddc(f>)n = 0, i.e.,

the solutions of the Dirichlet problem using the so-called Bremermann-Perron
method above.

As already indicated, the following result, treated in Chapter 4, by Bedford

and Taylor (1976) is a central theorem in pluripotential theory:

Theorem 0.1. Let Q be an open subset of C" , and let u be a locally bounded

plurisubharmonic function on Q. Then u is maximal if and only if it satisfies
the homogeneous Monge Ampere equation.

Of other main results from Chapter 4 we mention a few, for example, the

fact by Bedford and Taylor (1982) that (locally in L°°) if we have a sequence

of plurisubharmonic functions um converging monotonically up or down to a
plurisubharmonic function u then (ddcum)n i-> (ddcu)n .

Bedford and Taylor also have proved (1982) the so-called Comparison The-
orem for bounded plurisubharmonic functions: Ju<v{ddcu)n < Ju<v{ddcv)" if

u > v on the boundary of the domain.

Lelong (1983) showed that every locally bounded plurisubharmonic function

is the limit in L,1^ of u¡ with (ddcUj)" - 0, thus making it clear that the
above results could not easily be extended to unbounded functions.

In addition, let me mention Josefson's Theorem (1978) that if locally a set

is contained in a pluripolar set, i.e., the set where a plurisubharmonic function

equals — oo, then there is a global plurisubharmonic function with this property.

Bedford and Taylor reproved this result using the operator (ddc)n . Another

of their results is that if a bounded function u is a limit of an increasing

sequence of plurisubharmonic functions and u* denotes the smallest upper

semicontinuous function > u, then u* differs from u only inside a pluripolar
set.

As demonstrated by Lelong's example above, one central difficulty, and a task
for the future, in this subject is how to define (ddcu)n for u unbounded, at

least for some mildly restricted class of functions.

Another direction to develop is to find good generalizations of F. Riesz's

Theorem above; namely, one would like to approximate a plurisubharmonic
function by a maximal plurisubharmonic function with only finitely many sin-

gular points. For one point, one has functions like log||z|| and Lempert has

another interesting such function on convex domains. For two or more points
it is difficult to find such functions since the operator (ddc)n is nonlinear. This
topic is treated in Chapter 6.

In the last few years maximal plurisubharmonic functions have been used suc-

cessfully in higher-dimensional complex dynamics; often these have logarithmic
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growth (a class of functions discussed in Chapter 5). This will undoubtedly con-

tinue.

The book by Klimek gives an excellent introduction to the subject of maximal

plurisubharmonic functions. He develops the theory in detail from scratch,

making the book suitable for use in a graduate course. The first two chapters

have exercises at the end. It would have been useful to also have exercises after

the remaining chapters.
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Given a complex-valued function <f> on the real line R, one can define the

multiplication operator M(<f>), acting on the Lebesgue space L2(R), by the

recipe M(4>): f —> (f>f. To operator theorists these objects are useful and well

understood, yet not without a certain charm due to a nice correspondence be-

tween properties of M(<f>) and properties of </>. If you are a Fourier analyst,

you will probably want to multiply "in the Fourier transform variable" as well,

via the Fourier multiplier D(y/) — F~lM(y/)F, where F is the Fourier trans-

form on L2(R). Since F is unitary (thus preserving all Hilbert space struc-

ture), D(y/) and M(y/) are isomorphic as Hilbert space operators, but they

relate very differently to the functional values of vectors in L2(R). On tak-

ing algebraic combinations of M((j>y% and D(y/ys, one has an interesting mix

indeed, including the linear differential operators with variable coefficients: if

y/(x) = x , then D(y/) = -id/dx . If you want to study bounded operators on

L2(R), you must take <p and y/ in L°°(R), but you are still left with bounded

pseudodifferential operators, including several famous subclasses (all of which

are generated by restricting either </> or y/ to be x > the characteristic function
of [0, oo)) : singular integral operators, Wiener-Hopf operators, Hankel oper-

ators, and, the subject of the book of Böttcher and Silbermann, the Toeplitz

operators

(1) D(X)M(<t>)D(x).

For most purposes, the preferred habitat of Toeplitz operators is the unit

circle T, where they look a bit more natural. Let us write L2 for the Lebesgue

space on T (with respect to normalized arc-length measure dd/ln), which

comes equipped with the orthonormal basis {e'"e :« = 0,±1,±2,...}. The

Hardy subspace H2 is the closed linear span of the nonnegative frequencies
{eine: n — 0, \ ,2, ...}. The orthogonal projection P of L2 onto H2 is the

analogue of D(x) above, and the analogue of (1) is PM(4>)P, where <j> is

now an L°° function on T. Since the last operator annihilates the orthogonal


