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growth (a class of functions discussed in Chapter 5). This will undoubtedly con-

tinue.

The book by Klimek gives an excellent introduction to the subject of maximal

plurisubharmonic functions. He develops the theory in detail from scratch,
making the book suitable for use in a graduate course. The first two chapters

have exercises at the end. It would have been useful to also have exercises after

the remaining chapters.
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Given a complex-valued function <f> on the real line R, one can define the

multiplication operator M{<j>), acting on the Lebesgue space L2(R), by the

recipe M(<j>) : f —* <f>f. To operator theorists these objects are useful and well

understood, yet not without a certain charm due to a nice correspondence be-

tween properties of M(<f>) and properties of </>. If you are a Fourier analyst,

you will probably want to multiply "in the Fourier transform variable" as well,
via the Fourier multiplier D(y/) — F~lM(y/)F, where F is the Fourier trans-

form on L2(R). Since F is unitary (thus preserving all Hilbert space struc-

ture), D(y/) and M(y/) are isomorphic as Hilbert space operators, but they

relate very differently to the functional values of vectors in L2(R). On tak-

ing algebraic combinations of M (</>)'s and D(y/)\ one has an interesting mix

indeed, including the linear differential operators with variable coefficients: if

y/(x) = x , then D(y/) - -id/dx . If you want to study bounded operators on

L2(R), you must take 4> and y/ in L°°(R), but you are still left with bounded

pseudodifferential operators, including several famous subclasses (all of which

are generated by restricting either <f> or y/ to be x > the characteristic function
of [0, co)): singular integral operators, Wiener-Hopf operators, Hankel oper-

ators, and, the subject of the book of Böttcher and Silbermann, the Toeplitz
operators

(1) D{x)M{4>)D{x).

For most purposes, the preferred habitat of Toeplitz operators is the unit

circle T, where they look a bit more natural. Let us write L2 for the Lebesgue

space on T (with respect to normalized arc-length measure dd/ln), which

comes equipped with the orthonormal basis {e'"e :« = 0,±1,±2,...}. The

Hardy subspace H2 is the closed linear span of the nonnegative frequencies
{e'"e: n — 0, 1,2,...}. The orthogonal projection P of L2 onto H2 is the

analogue of D(x) above, and the analogue of (1) is PM(4>)P, where <f> is
now an L°° function on T. Since the last operator annihilates the orthogonal
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complement of H2, it is customary to restrict it to H2 and define the Toeplitz

operator T(<f>): H2 -» H2 by the rule T{$)f = P{(pf). The matrix of T{<j>)
with respect to the nonnegative frequencies is

/a0   a-\   a-2     •\

a\     a0    a-\

a2    a{      a0

\\       ••     •••      ••/

where {an} are the Fourier coefficients of (p. These are the Toeplitz matrices,

considered by Otto Toeplitz in the early twentieth century.

Toeplitz operators and their isomorphs, the Wiener-Hopf operators, have

a number of applications, for example to stationary stochastic processes and

orthogonal polynomials, as well as diffraction theory, transport theory, and other

subjects in mathematical physics. They are, however, especially attractive as

objects in pure mathematics, and their study has brought about a felicitous

convergence of functional analysis and function theory.

1. Early theorems

The study of T(<j>) in the modern mode dates from the 1950s, coinciding

with the first flowering of nonselfadjoint operator theory. The key problem

was, and remains, to decide when T(tf>) is invertible, or equivalently since

T(<j>) - XI = T{4> - A), to find the spectrum sp T(<f>) in terms of <j>, the symbol
of T(cf>).

Hartman and Wintner [21] showed that in the selfadjoint case (the case when

</> is real valued), one has sp T{<f>) = [essinf^, ess sup 0], in contrast to M{cf>),

whose spectrum is merely the essential range of (f>. This result is a lovely

illustration of (and is implied by) three properties of the spectrum which hold

for arbitrary <¡>. They are as follows: the spectrum always contains the essential

range of </> (Hartman and Wintner [20]), the spectrum is contained in the closed

convex hull of the essential range (Brown and Halmos [6] and Devinatz [13]),

and the spectrum is always connected (Widom [39]). Douglas has written [16,

p. 196] that Widom's proof "gives no hint as to why the result is true"; that no

more intuitive argument has been found in almost thirty years underscores the

difficulty of the invertibility question.
In fact, Widom [38] and Devinatz [13] independently gave exact invertibility

criteria, which have been of considerable theoretical utility but which are hard

to check in practice. According to the authors of Analysis of Toeplitz operators

(p. 60):

This is the reason for a great part of all further investigations

devoted to the invertibility of Toeplitz operators. The main

goal of these investigations is to obtain invertibility criteria, or

equivalently, descriptions of the spectrum, in terms oí geometric

data of the symbol. The Widom-Devinatz theorems answer the

question in analytical language.
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2. Algebra

To confront the "geometric data of the symbol", one can start with some

algebra. The map <f> -> T(<f>), which we can call T, carries L°° into ¿2f(H2),
the C*-algebra of_bounded operators on H2. It is linear, norm-preserving,

and a *-map: T(cf>) = T(</>)*. However, T does not (fortunately) preserve

products; without this apparent defect, the theory of T{<¡>) would be much less

interesting.

The discovery of such multiplicative properties as T possesses has provided

one key to the analysis of T(4>). Brown and Halmos [6] showed that T(y/<j)) —

T(if/)T(4>) exactly when either 4> or y7 is analytic, that is, belongs to the algebra

H°° — L°° n H2. A weaker kind of multiplicativity involves the ideal 3if of
compact operators in ¿¿?(H2). Let n denote the quotient map from Sf(H2) to

the Calkin algebra J2?{H2)I5? , and write Tn for the composition noT. When

does Tn(y/(j)) = Tn(y/)T"((j)), that is, when is T(y/4>) - T{y/)T(4>) compact?

This hard problem was solved by the combined efforts of Axler, Chang, and

Sarason [3], and Vol'berg [36]. However, a special case observed much earlier

by Coburn [9], and implicit in the work of Gohberg and Krein [18], is especially

useful:  T* is multiplicative on the algebra C of continuous functions.

Recall that an operator A on H2 is Fredholm if its image in ¿f{H2)/Ji is

invertible. Equivalently, A has closed range and both ker^ and ker^i* are

finite dimensional; the difference of the two dimensions is the Fredholm index,

ind^. Now if B is a subset of L°° , let us write &~{B) for the norm-closed

algebra in S?(H2) generated by those T{<j>) with <f> in B . It is then a conse-

quence of Coburn's result and some elementary C*-algebra theory that •iT'(C)

contains 3? and that Tn: C —► ^~{C)/Ji is an isometric ^-isomorphism. It

follows that, for continuous <f>, T((f>) is Fredholm if and only if 4> never van-

ishes on the circle. A homotopy argument then shows that ind!T(<£) is the

negative of the winding number of (¡> about the origin. The final step to in-

vertibility is provided by a lemma of Coburn, valid for any Toeplitz operator,

which asserts that either kerT(0) or kerT(<j>)* is the zero subspace. Thus

ind T((f>) — 0 is equivalent to invertibility. This theorem, in various versions, is

due to Krein, Calderón, Spitzer, Widom, and Devinatz. The elegant argument

sketched above was found by Coburn and Douglas; see [16].

It is a short step from the preceding remarks to see that Tn is actually

multiplicative on the vector sum H°° + C. This interesting space, shown by

Sarason to be a closed subalgebra of L°°, has come to occupy a central place

in the theory. Douglas [16] discovered that the invertibility theorem above

holds for H°° + C provided "nonvanishing" and "winding number" are suitably

interpreted.

3. Discontinuities and localization

The natural question is how to proceed with discontinuous 4> lying in algebras

(such as L°° itself) on which T* is not multiplicative. One approach is to look

at points of discontinuity under a microscope, as it were, via the Gelfand theory.

Consider L°° as a C*-algebra. It possesses a space ^#(L°°) of multiplicative
linear functionals, sometimes called the maximal ideal space. The Gelfand

transform associates to each </> in L°° a continuous function 4> on ^#(L°°)

via the formula <j>(a) = a{4>). The map <f> —► 4> is a '-isomorphism of L°° and
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the space of continuous functions on ^#(L°°). Now the maximal ideal space

Jf(C) of C consists of just the evaluation functionals at points X in T. One

defines the fiber J?x(L°°) over X to be the set of those a in ^#(L°°) which
agree on C with evaluation at X. This set can be thought of as an exploded

version of the point X with the restriction <j>\Mx{L°°) encoding the nature of

the discontinuity of <p at X. In particular, the essential cluster set of <fi at X

equals the range of 4> on ^(£°°) •
Now suppose that J? is a C*-subalgebra of L°° containing C and that we

want to understand T(<j>) for </> in B. For each X in T, let Ix denote the

closed ideal in !T{B) generated by those T(4>) with 0 in C and <f>(X) - 0.
The key point, discovered by Douglas [16], is that T(4>) is Fredholm exactly

when each "local operator" Tx{<f>), defined to be the abstract coset T(tp) + Ix ,

is invertible in ¿7~(B)/Ix . If we take B = L°° , some pretty theorems of a very

general nature emerge. For example, the local operator Tx{4>) depends only on

the restriction ^\Mx{L°°). Hence, T((j>) is Fredholm precisely when, for each

X, there exists y/ in L°° with T(y/) Fredholm and y/ = <¡> on Mx(L°°). This is

one version of a principle of Simonenko, Douglas, and Sarason: Fredholmness
of T{(j>) is entirely a local property of <p, in contrast to invertibility, which

depends on a global invariant, the Fredholm index.

If the above seems abstract, small B can yield beautifully concrete results.

Suppose B = PC, the closed algebra generated by the piecewise continuous

functions. Functions in PC have right- and left-hand limits at every point in
T. Although Tn is not multiplicative on PC, ^(PC)¡3^ is commutative

and each local algebra ^ (PC)fix is isomorphic to C([0, 1]) via the mapping

which carries Tx(4>) to the function t<j>(X+) + (1 - t)(f>(X-), 0 < t < 1, where
(p{X+) and <j>(X-) are the right- and left-hand limits of <t> at X. It is immedi-
ate that the spectrum of the local operator Tx(<t>) is the complex line segment

[<f>(X-), <f>(X+)] ; hence, T(<f>) is Fredholm exactly when no such segment (in-

cluding the degenerate ones) contains the origin. The winding number of the

image of <f> augmented by the nondegenerate segments gives -ind T(tf>). This

result, which strikingly illustrates the connectedness of T(4>), was discovered

by Widom [37], Simonenko [33], Devinatz [13], and Gohberg [17]. The local
algebras were computed by Douglas [15] and Silbermann [32].

The inner workings of localization require that ^(C)/Ji be contained in

the center of ¿7~(B)/3f. However, algebras larger than C have this property,

and localization over them yields smaller fibers and, thus, a finer theory. A

beautiful example of this was treated by Sarason [31] with C replaced by the

quasi-continuous functions QC, the intersection of H°° + C with its complex

conjugate. Since H°° intersects its complex conjugate only in the constant

functions, it is surprising that QC is considerably larger than C and, in fact,
coincides with the bounded functions of vanishing mean oscillation. It is a
result of Douglas that ^(QQ/Jf actually is the center of ^(L°°)/^ . For

B, take PQC, the closed algebra in L°° generated by PC and QC. If £ is
in JT{QC), the fiber JT^PQC) (defined like the L°° fibers above, but with
PQC replacing L°° and £ playing the role of the evaluation functional at

X) sometimes contains an element £,+ , sometimes another <^_ , and sometimes

both, but never more than these; it is analogous to the more concrete two-point

fiber Jfk(PC), for X in T, which consists of the right and left limit functionals
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at X. For <f> in PQC, Fredholmness of T(<¡>), interpreted locally, means that

the segments [<£(£_), $(<!;+)] never hit the origin. Remarkably, Sarason was able

to describe Jf(PQC) concretely enough so as to cast this in terms of symbol
geometry:  T{<¡>) is Fredholm exactly when the segments

±j    Ae")dt,  ±jf      f(eil)dt

connecting the left- and right-hand averages of <f> at X — e'e stay away from
zero as S j 0, uniformly in X.

4. Operators on the line

Local algebras take an interesting turn on the real line. Power [26], motivated

by spectral results of Duduchava, showed that Douglas's local theory can be used

to describe, in principle, the Fredholm status of any finite algebraic combination
of M(<j>ys and D(y/)'s, where (j) and y/ lie in PC on the line (such functions

also have limits at -co and +oo). Let *¥(PC) denote the C*-algebra generated

by all such M(<f>) and D(y/). A fascinating point is that *¥(PC)¡3¡f, unlike
IT (PC) 13? on the circle, is not commutative. Replacing PC by C, the algebra

of continuous functions on R' = Ru{oo}, yields a smaller operator algebra

*¥(C) such that ViQ/JT lies in the center of 4*(PC)/JT and has maximal
ideal space which can be realized as JÍ — (R* x R*)\(Rx R). For (x, y) in J?,

the local algebra is *¥(PC)II<Xty), where i(X,y) is the closed ideal in *¥(PC)
generated by all M((f>) and D(y/) with 4> and y/ in C and 4>(x) = y/(y) =
0. For points (x, y) other than (co, co) the corresponding local operators

M(x,y)(<i>) and D{x,y)(4>) do not in general commute, and, in fact, T^C)//^^)

is *-isomorphic to the C*-algebra of 2x2 matrices over C([0, 1]) generated
by the idempotents

This can lead to relatively exotic (but computable) local spectra. For general
L°° symbols, however, very little is known.

Simple combinations of M(c/))'s and D(y/)'s yield a menagerie of classical

operators. If a(x, y) is a finite sum of terms like <f)(x)y/(y), the corresponding

sum 5 of the operators M(<j>)(I -2D(x))M(y/) is the singular integral operator
given by

Sf(x) = ̂ ra-^f(y)dy,
"' J—oo  x    y

the integral being taken in the principal value sense. The operator D(x) itself

is exactly the orthogonal projection P+ onto the Hardy space //2 on R, an

analogue of H2 on T, and the image of L2(0, co) under F_1 . The Wiener-

Hopf operator W on L2(0, co), given by

WAX) = r
JO

k(x-t)f(t)dt

with k integrable on R, is the restriction of M(x)D(<f>)M(x) to L2(0, co),

where <t> = V2nF~lk . That Wiener-Hopf operators are isomorphic to Toeplitz
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operators and that Toeplitz operators on R and T are the same up to isomor-

phism was settled by Rosenblum and Devinatz, thus unifying parallel theories.

The equivalences are given by the Fourier transform and a change of variables
from R to T. The line, however, seems to be best for studying certain phenom-

ena, particularly oscillatory discontinuities with the discontinuity placed at co,

for example as in Coburn-Douglas [10] and Abrahamse [2]. Finally, the Hankel

operators, which in one incarnation take the form (I - P+)M(<p)P+ , should be

mentioned. They have a large literature and many applications, as well as close

connections (ignored here) to Toeplitz operators; see, for example, Power [27]

and Peller [25].

5. But, what is T(<f>) ?

The results above belong mainly to Fredholm theory, or behavior modulo

the compact operators, with almost accidental implications for invertibility via

Coburn's lemma. It is reasonable to go further and ask how T(</>) moves vectors

around in H2. Answers are scarce. For selfadjoint operators, the spectral

multiplicity theory of Hellinger and Hahn is available to answer this question

in principle. Given a selfadjoint T((f>), there is a direct integral Hilbert space

2 = [       ®Hxdv(X)

(an L2-like space of vector-valued functions / whose values f(X) are con-

strained to lie in the variable Hilbert spaces Hx at each X) and a unitary

operator U: H2 -» 2 such that UT(4>)U~i is the simple-looking multiplica-

tion operator f(X) —► Xf(X). The multiplicity function n(X) = dimHx and

the measure class of v determine T(<p) up to isomorphism. Rosenblum [29]

showed that for Toeplitz operators v is always Lebesgue measure on sp T(<f>),

while in [22] Ismagilov announced a formula for n(X). Working independently,

Rosenblum [28] discovered the same formula and supplied a proof, including

an explicit representation for U, thus completing the selfadjoint theory little

more than a decade after Hartman and Wintner described the spectrum.
Multiplicity theory is also available for normal operators (those which com-

mute with their adjoints), but this does not take one much further with Toeplitz

operators: the only normal T(cf>) are affine functions of selfadjoints. Clark and

Morrel, however, posed and answered a fruitful question [7, 8]. Suppose </> is

continuous and real valued, so that it maps T onto a closed curve which looks

like a rubber band squashed flat on the real axis. If one teases the rubber band

apart into a curve in the plane, possibly self-intersecting, does Rosenblum's

mapping U: H2 -» 2 continue to exist in some distorted way? They showed

that when <j> is the restriction of a rational function to T, 2 is transformed

into a direct sum of copies of H2 and possibly another direct integral, while

U persists as an invertible (but no longer unitary) operator. If, for example,

<f> sweeps out a figure eight, traversed once except for the double point, then

UT((j))U~x = T(a) © T(b)* acting on H2 © H2, where a and b are respec-

tively the boundary functions of conformai maps of the unit disk onto the two

regions surrounded by the loops of <j>, the first with positive orientation, the

second with negative. This is a major step in understanding T(<j>) because an-

alytic Toeplitz operators (those with symbols in H°° like T(a) and T(b)) are

simpler objects than Toeplitz operators in general; see below.
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A final case links Toeplitz operators, subnormal operators, and weighted

shifts in an unexpected way. An operator S on a Hilbert space H is subnormal

if there exists a Hilbert space K containing H and a normal operator TV on

K which leaves H invariant and whose restriction to H is S. This class has
deep and well-developed connections with function theory [11]. Normal opera-

tors are of course subnormal. Among the Toeplitz operators, the analytic ones

are also subnormal: any M(<f>) acting on L2 is normal, and when <f> is in H°° ,

M(cf>) leaves H2 invariant and so T(<f>) = M(4>)\H2. Note that the projection
P can be omitted here from the definition of T(<f>), making things considerably

simpler. In his 1970 article Ten problems in Hilbert space [19], Halmos asked

(Problem 5): "Is every subnormal Toeplitz operator either normal or analytic?"

Among the analytic Toeplitz operators, the most important is the unilateral

shift T(z) (here z(el6) = e'e) which shifts the orthonormal basis of nonneg-

ative frequencies. More generally, a weighted shift is an operator W which

acts by shifting some orthonormal basis {e„: n = 0,1,2,...} according to

the rule We„ = wnen+\ ; the scalars wn are the weights of W. For T(z) and

the basis of nonnegative frequencies, one has wn - 1 . In a paper giving a

partial yes answer to Halmos's problem [1], Abrahamse asked a prescient ques-

tion: If a Toeplitz operator is subnormal and is also a weighted shift, must the

weight sequence be constant? Sun Shunhua [34] proved that the only possible

exceptions (up to constant multiples) form a small family of Toeplitz weighted

shifts with the weight sequences wn = \/l - a2n+2, where 0 < a < 1 ; the

associated orthonormal bases are not the nonnegative frequencies! For each a

the corresponding tj>, which is continuous and has unit modulus, is y/ + ay/,

where y/ is a conformai map of the unit disk onto a certain ellipse. Manifestly,

T(<f>) is neither normal nor analytic. Cowen and Long provided the final step

by showing that these T(4>) are actually subnormal [12], thus solving Halmos's

problem. The problem of describing all subnormal Toeplitz operators remains

open.

6. Other domains, higher dimensions

In recent years two new branches of Toeplitz theory have developed, each

with its own distinctive flavor. First, one can replace H2 by a Bergman space,

the space of analytic functions on a complex domain which are square integrable

with respect to (possibly weighted) area or volume measure. The Toeplitz oper-

ators are again defined as multiplication followed by projection; their properties

tend to be determined by the limiting behavior of the symbol near the boundary

of the domain. A striking example is the work of Berger and Coburn [4] on the

Segal-Bargmann space of entire functions, which provides a Toeplitz model for

the creation and annihilation operators of quantum mechanics. Zhu's mono-

graph [40] contains a good introduction.

The second direction, which is not entirely disjoint from the first, might be

called topological index theory. Here Toeplitz and related operators act on func-

tion spaces on higher-dimensional domains and manifolds; the theory merges

into index theory for differential operators. Typically symbols remain contin-

uous and the complication arises in describing Fredholm or other analytical
indices via interaction of the symbol with topological or geometric invariants

of the domain. A sampling of this active area can be found in Douglas [14],

Upmeier [35], and Kaminker [23].
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7. The book of Böttcher and Silbermann

Analysis of Toeplitz operators is a large, friendly book, which will surely be
welcomed by all with an interest in the subject. The authors are well known

for their contributions to Toeplitz operators, including an earlier monograph

on Toeplitz determinants [5]. The emphasis here is on invertibility and Fred-

holm theory on the circle, although substantial chapters are devoted to Toeplitz

operators on the torus T2 and to Wiener-Hopf operators on L2(0, co). An in-

teresting aspect of the book is the parallel development throughout of Toeplitz

theory for H2, for the Banach Hardy spaces Hp , and for the sequence spaces

lp. Similarly, a systematic treatment of Toeplitz operators with matrix sym-

bols, acting on vector-valued Hardy and sequence spaces, is whenever possible

woven through the scalar theory.

Two introductory chapters collect prerequisites and treat the elementary the-

ory of Toeplitz operators on H2. The latter category covers a lot of ground, and

the presentation is ideal for the analyst who wants to learn the fundamentals.

Chapters 3 and 4 form the conceptual core of the book. The authors set forth

four broad ideas on which to base their analysis. The first, "algebraization",

codifies, in a Banach algebra setting, the main properties of T and related

mappings. Algebraization is combined with "essentialization", which means di-

viding out by some canonical ideal (for example, the compact operators), and

"localization", one version of which we have sampled. These algebraic ideas

are further mixed with a very general theory of "harmonic approximation", in

which one smooths out a discontinuous symbol 4> by integrating against an ap-

propriate approximate identity while retaining sufficient information to extract

Fredholm data for T(<j>). Examples are the use of left- and right-hand aver-

ages in the treatment of PQC and Fredholm index computation via the winding

number, not of 4> (which may not have a winding number), but of Poisson

integrals of <j>, an idea first applied by Douglas to H°° + C. The generality

of the approach makes for some rather elaborate notation which is, neverthe-

less, well conceived. Also helpful in this regard is the consecutive numbering

(within chapters) of all theorems, definitions, remarks, etc. Tracing references

to preceding or subsequent material is quite easy.

Two chapters continue themes from the authors' earlier book. The first treats

the finite section method for inverting T(tf>), in which one wants to solve the

equation T(<f>)f = g by applying the projection Pn onto the span J[n of

{l,e'e, ... , e'"8} . One hopes to solve the matrix equations P„T(4>)fn = Png

and show that f„^>fasn—>oc. The book's final chapter studies determinants

of the finite sections PnT(<$>)\J[n and their behavior as n —> co . This is a time-

honored and still-active area with roots in the classical limit theorems of Szegö.

Although the authors have clearly put considerable effort into an abstract

framework for their subject, they do not stint on applications to the hard an-

alytical cases. Sarason's theory of PQC, for example, is presented in depth,

as is Böttcher's demonstration of the surprising spectral variety attainable with

symbols taking on only three distinct values. The reader will also find subtle

localization theories of Axler, Clancey, and Gosselin, as well as the authors'

proof of a conjecture of Fisher and Hartwig on determinental asymptotics aris-

ing from the two-dimensional Ising model. Scattered throughout are many open

problems. The authors' fondness for the subject is apparent in this wealth of
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detail.  The notes at the end of each chapter, both scholarly and personal in

tone, convey the same impression.
Böttcher and Silbermann have brought us a fine book. Though it omits some

important topics (most surprisingly, the similarity theory of Clark and Morrel
is not mentioned), it is almost encyclopedic within invertibility theory and is a

natural sequel to the 1972 text of Douglas [16], which introduced Banach algebra

techniques to a wide audience. Moreover, it nicely complements several related

books which emphasize different aspects of Toeplitz theory: Rosenblum and

Rovnyak [30] (selfadjointness and factorization theory), Nikol'skii [24] (almost
everything about the shift operator), and Zhu [40] (Bergman spaces). I expect

that Analysis of Toeplitz operators will become a standard reference for both

novices and expert practitioners of this beautiful subject.
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