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If the nineteenth century was a period in which orthogonal polynomials were

treated as special functions, for which all manner of identities had to be estab-

lished, then the twentieth century has been a period in which they have been

viewed as objects worthy of analysis, especially their asymptotic behaviour as

the degree tends to infinity. The research monograph under review presents a

polished part of the asymptotic theory.

Recall that if p. is a nonnegative Borel measure with support supp(^) in the

complex plane C containing infinitely many points, and if all moments

Hj\= jtJdß(t),        7 = 0,1,2,...,

are finite, then there exists a unique sequence of orthonormal polynomials

p„(n; z) = y„(p)zn + ■■■ ,        y„(p) >0,  « = 0,1,2,...,

satisfying the orthogonality relations

/ Pn(P J z)Pm(ß i Z) dpt(z) = 8mn.

Clearly this can be formulated as orthogonality within an inner product space,

and the Gram-Schmidt process may be used to generate {p„(p ; z)}£L0 •

Orthogonal polynomials have a myriad of applications, namely, in numeri-

cal analysis, approximation theory, combinatorics, special functions, statistical

physics, signal processing and speech synthesis, ... , and even design of astro-

nomical observatories. Interest in them has continued to grow, and there is at

least one annual conference devoted to their theory and applications.

Yet in the last century, the term "orthogonal polynomial" was hardly used,

and usually they masqueraded in some other form. For example, in his famous

posthumously published memoir [7], Stieltjes introduced Riemann-Stieltjes in-

tegration and orthogonal polynomials with respect to fairly general measures

only to help describe the values of certain continued fractions.

Orthogonal polynomials seemed to have emerged as objects worthy of inde-

pendent study in the 1920s. Still, in his papers (see [8]) that gave birth to outer

(or Szegö) functions and H2 spaces, Szegö used Toeplitz forms, not orthogonal

polynomials, in the title, despite the fact that these papers were instrumental

in developing an asymptotic theory for orthogonal polynomials for measures p.

supported on the unit circle.

It is somewhat surprising to discover that even for classical Jacobi polynomi-

als [orthogonal for p'(x) — (1 - .x)Q(l + x)ß on (-1, 1)] or Hermite polyno-

mials [orthogonal for fi (x) = exp(-x2) on K], much of the analysis—bounds,

asymptotic behaviour, and so on—was only carried out this century, and then

by the "greats" of the subject: Szegö, Bernstein, Faber, and others like Einar
Hille.
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Perhaps the most widely used polynomials are the Chebyshev polynomials

Tn(x) := cos(« arceosx), x e (-1, 1), n > 1, orthogonal for the weight

p'(x) = 1/Vl - x2 on [-1, 1]. They already illustrate very many of the proper-

ties characteristic of general orthogonal polynomials; their oscillatory behaviour
on the interval of orthogonality (-1, 1) is obvious from their definition. Off

the interval of orthogonality, they exhibit the characteristic geometric growth.
From the identity

Tn(\(w + w-x)) = \(w" + w-"),        w€C\{0},

and

z = \(w + w  ') & w = yi(z) = z + V' z2 - 1,        zeC\[-l,l],  |tu| > 1,

where the branch of the square root is chosen so that ^r is positive in (0, oo),

it is easily seen that

lim Tn(z)ly/(z)n = \,

uniformly in compact subsets of C\[-l, 1].  Note that y/ maps C\[-l, 1]
conformally onto {w : \w\ > 1}.

This type of asymptotic is called a strong, or power, or Szegö asymptotic. It

implies the weaker ratio asymptotic

lim Tn+i(z)/T„(z) = y/(z)
n—too

and the still weaker nth root asymptotic (with a suitable choice of branches)

lim Tn(z)l"> = yi(z).
n—too

Asymptotically most of the analysis of orthogonal polynomials has involved

one of these three asymptotics. It was Szegö [8] who proved in the early 1920s

that if p = p.' dx is supported on [-1, 1] and

(1) /    "*^Z1 dx > -co,
J-\ vl -x2

log/i'C*) j„ ^

then there is a strong asymptotic of the form

lim pn(p,z)I'y/(z)n = G(z),        z£[-l,l],

where G(z)  is an "outer" function associated with log/z'.   Conversely, the

boundedness of {pn(p; z)/y/(z)"}™=0 is known to imply (1).

In 1940 Erdös and Turan [1] proved that if p is supported on [-1, 1] and

pi is positive a.e. in [-1, 1], then there is an «th root asymptotic

\im pn(p;z)xln = y/(z),        z^[-l,l].
n—»oo

A little over 40 years later, Rahmanov [5] showed that the Erdös-Turan condi-

tion is sufficient for the stronger ratio asymptotic

Mm pn+i(p; z)/pn(p; z) = y/(z),        z$[-\, 1].
n—►oo

This ratio asymptotic showed that such measures lie in NevaVs class JÍ, but
the theory of that class is another story [4].
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In the late 1960s and early 1970s Widom and Ullman gave more general

criteria for nth root asymptotics, and, in spirit, the book of Stahl and Totik
owes much to the ideas of Ullman.

But they have taken the theory much further. Their monograph is a very

polished treatment of nth root asymptotics for orthonormal polynomials as-

sociated with general measures with compact support in C. Perhaps there are

still unsolved problems but surely accessible only to absolute experts with a very

deep insight into orthogonal polynomials and potential theory. Every major the-

orem is accompanied by examples illustrating its sharpness, and many of their

important results have not appeared elsewhere.

A fundamental ingredient in the formulation of their theorems and proofs is

potential theory. This is natural, for the log of a polynomial is a potential with

respect to a discrete measure; more precisely,

log
~/

log
1

z-t
dv(t),

where v is the discrete measure of total mass n placing mass 1 at each zero z¡

of the polynomial. It is this connection, and the power of weak convergence of

sequences of measures, that has made potential theory an indispensable part of

complex approximation and orthogonal polynomials in recent years. A forth-

coming monograph of Saff and Totik will be devoted to these themes [6].

This has frightened off many would-be users/researchers, as the prospect of

having to absorb an entire textbook such as Tsuji [9] or Landkof [3] or Hayman

and Kennedy [2] has been too daunting. One of the major advantages of the

book under review is a clear and detailed introduction to the relevant sections

of potential theory, which begins in the opening chapters of this book and is

completed in a lengthy appendix. For many who have no interest in orthogonal

polynomials but need to apply potential theory to sequences of polynomials or

to complex approximation, the appendix alone would justify buying the book.

Recall that if B is a Borel subset of C with bounded complement, then

the Green's function gß(z; oo) for C\B with pole at infinity is a function

determined by the following three properties: (i) gs(z ;oo) is nonnegative

and subharmonic in C, and harmonic in the interior of B, except at oo ;

(ii) gß(z; oo)-log|z| has a finite limit as \z\ —► oo ; (iii) gs(z ;oo) = 0 q.e. in

C\B, that is, except possibly in a set of logarithmic capacity 0.

For a Borel measure p with compact support, we define its minimal-carrier

Green function

gM(z ; oo) := sup{^> c(z ; oo) : C is a bounded Borel set and p(C) = p(C)},

and its minimal-carrier capacity (here cap denotes logarithmic capacity)

cß := inf{cap(C) : C is a Borel set and p(C) = p(C)}.

(The sets C of full //-measure are called carriers of p .) Moreover, let Q denote

the unbounded component of C\ supp[/i]. The authors show in Chapter 1 that

lim sup \p„(p; z)\l/n <exp(gß(z; oo))

uniformly in compact subsets of C, and

liminf \pn(p; z)|1/n > exp(^n(z; oo))
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locally uniformly in compact subsets of C\ Co(supp[/i]), where Co means con-

vex hull. Moreover, the leading coefficients yn(p) satisfy

l/cap(supp[/i]) < liminf yn(p)l/" < limsupy„(/i)1/n < 1/cy
«-»oo n-»oc

These results are mostly due to Ullman.

One interesting corollary is to arbitrary sequences of polynomials: If Pn is

a polynomial of degree n that is not identically 0, n > 1, then uniformly in

compact subsets of C we have

limsup(|Pn(z)|/||JP,,||L2{ii))1/" < exp(^(z; oo)).
n—»oo

The sharpness of the upper and lower bounds is carefully established.

In Chapter 2 the authors examine the connection between the asymptotic

behaviour of yn(ß)^n and the zeros of p„(p ; z). They begin by showing that

all the zeros of p„(p; z) lie in Co(supp[/¿]), and in any compact set V of SI,

the number of zeros of p„(p ; z) is bounded as n —► oo. They then proceed to
investigate the weak limits of the unit measures

1 1   "

j=i

that place mass 1/n at each zero xjn, I < j < n, of p„(p; z). A rather

special case of the results is that if supp[/¿] is an interval and c^ > 0, then the
assertion

(2) limynOO'/^l/capisuppM)
n—»oo

is equivalent to

£i/Pn converges weakly to the equilibrium distribution of supp[/i],  n —> oo.

In Chapter 3 the notion of "regular asymptotic behaviour" is discussed. This
is based on the equivalence of (2) to each of the following:

lim \pn(p; z)\xl" = exp(gn(z; oo))
n—»oo

locally uniformly in C\ Co(supp[^]) ;

lim sup \pn(p ; z)|1/" = 1   q.e. on the boundary of SI.
n—»oo

If any of these hold, the measure p is said to belong to Reg and to be regular.

Several further characterisations of Reg are given, and the notion of regularity

in Lp(p) spaces is discussed—one of the main results being that regularity for
one p implies regularity for all p . Chapter 4 deals with criteria for regularity,
starting with the Erdös-Turan criterion, suitably generalized, Widom's and Ull-
man's criterion, and ending with several new criteria that are easily applicable.

The most original part of the monograph is Chapter 5, which deals with

"localisation": If Pk '■= /¿\k is the restriction of p to some compact set K,
which is well behaved in the sense that it is regular, then what can we say about

the original orthogonal polynomials {pn(p; z)}£ii ? Moreover, if the outer

boundary d SI of supp[/¿] can be decomposed into compact sets K¡ such that
PKj is regular, can we deduce that p is regular? These questions are carefully
investigated, and even localization at a single point is discussed.
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The reader unfamiliar with applications might question the utility of such a
thorough study of nth root asymptotics—until he comes to Chapter 6. There

the authors study rational interpolation, Padé approximation, and best rational
approximation to Markov functions

In fact, much of the impetus for development of nth root asymptotics came

from investigation of the rate of convergence of interpolation of functions ana-

lytic in some region, dating back at least to Walsh's monograph [10] and before.

One of the most elegant results of Chapter 6 is a powerful extension of work

of the Gonchar school (based at the Steklov Institute in Moscow): Let V be a

compact subset of C\ supp[/i] that is symmetric with respect to the real line,

that is, V = V. Assume moreover that cap(F) > 0, and let cap(F, supp[//])

denote the condenser capacity of the pair (V, supp[/x]). Let Enn(f; V) be the

error in best uniform rational approximation of / on V by rational functions

of type (n, n) (this means numerator and denominator degree at most n) so
that

E„n(f\ V) = inf{||/ - r\\Lao{V) : r is a rational function of type (n, «)}.

Then

lim £„„(/; F)1/«2") = exp(-l/cap(F, suppt/i]))
n—»oo

if and only if p G Reg. Even when p 0 Reg, we have lim sup < .

The other applications in Chapter 6 are also of great interest, in particu-
lar, best L2(p) approximation of analytic functions, weighted approximations,

Padé approximation of Markov functions by rational functions of type (Xn, n)

where X is fixed, and determining sets.

Historical notes and comments are presented after the appendix. All in all,

this is a well-written, well laid out, interesting research monograph, essential to

anyone involved in complex approximation, orthogonal polynomials, rational

approximation, and applications of potential theory in the plane.
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Before discussing the material in the book under review, let me try to describe

its mathematical context, starting with the notions of topological space and

homeomorphism. Some technical language will be used without definitions. At

their first appearance, such terms will be placed in quotation marks, in the hope

that the context together with the reader's background will convey the general

idea.
Ideally, one wants a classification theorem, or at least a characterization of

topological type for significantly occurring spaces, in terms of a short list of

invariants. As a general goal, this is out of reach. A breakthrough idea appeared

in the work of J. W. Alexander, in his study of the topological invariance of

simplicial homology. He showed that spaces of the same homotopy type have

isomorphic homologies. Let us review the definitions. Two continuous maps

/, g : X —► Y are homotopic if there is a continuous map H : X x [0, 1 ] —► Y

extending / and g on the subspaces X x {0} and X x {\} respectively. Two

spaces X, Y have the same homotopy type provided there are maps / : X —» Y

and g : Y —» X which are inverses up to homotopy; gf is homotopic to the

identity map of X, and likewise for fg.
Often, but not always, computable topological invariants are actually invari-

ants of homotopy type. Furthermore, the possibility of a short list of homotopy

invariants characterizing significantly occurring homotopy types seems more
within reach than the same problem for topological types. Even so, there are

still major difficulties.
Some understanding of the problems for characterizing general homotopy

types can be gained when one realizes that the basic algebraic tools in homotopy

theory are often blind to local point set subtleties. For example, the Warsaw

Circle (definition below) and a point, while not of the same homotopy type,

look alike in the sense that they are "weakly equivalent". Roughly, this means

that the inclusion of a point into the Warsaw Circle induces an isomorphism of

any of the usual algebraic invariants, homotopy, homology, etc. Recall that the

Warsaw Circle consists of the subspace of the Cartesian plane consisting of the

graph of y = sin £ , 0 < x < 1, the vertical interval {0} x [-1, 1], and an arc

from (0, 0) to (1, sin 1 ) which misses the rest of the graph and the interval.


