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Before discussing the material in the book under review, let me try to describe

its mathematical context, starting with the notions of topological space and

homeomorphism. Some technical language will be used without definitions. At

their first appearance, such terms will be placed in quotation marks, in the hope

that the context together with the reader's background will convey the general

idea.
Ideally, one wants a classification theorem, or at least a characterization of

topological type for significantly occurring spaces, in terms of a short list of

invariants. As a general goal, this is out of reach. A breakthrough idea appeared

in the work of J. W. Alexander, in his study of the topological invariance of

simplicial homology. He showed that spaces of the same homotopy type have

isomorphic homologies. Let us review the definitions. Two continuous maps

f, g : X —> Y are homotopic if there is a continuous map H : X x[0, 1 ] —► Y

extending / and g on the subspaces X x {0} and X x {1} respectively. Two

spaces X, Y have the same homotopy type provided there are maps / : X —► Y

and g : Y -* X which are inverses up to homotopy; gf is homotopic to the

identity map of X, and likewise for fg.
Often, but not always, computable topological invariants are actually invari-

ants of homotopy type. Furthermore, the possibility of a short list of homotopy

invariants characterizing significantly occurring homotopy types seems more

within reach than the same problem for topological types. Even so, there are

still major difficulties.
Some understanding of the problems for characterizing general homotopy

types can be gained when one realizes that the basic algebraic tools in homotopy

theory are often blind to local point set subtleties. For example, the Warsaw

Circle (definition below) and a point, while not of the same homotopy type,

look alike in the sense that they are "weakly equivalent". Roughly, this means

that the inclusion of a point into the Warsaw Circle induces an isomorphism of

any of the usual algebraic invariants, homotopy, homology, etc. Recall that the

Warsaw Circle consists of the subspace of the Cartesian plane consisting of the

graph of y = sin £ , 0 < x < 1, the vertical interval {0} x [-1, 1], and an arc

from (0, 0) to (1, sin 1 ) which misses the rest of the graph and the interval.
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The algebraic invariants of homotopy theory tend to ignore phenomena like this

where geometry meets analysis.

The geometry that homotopy theory sees well was codified in the fundamen-

tal work of J. H. C. Whitehead, in the notion of a "CW complex". Two features

which make this idea successful are: (i) a weak equivalence of CW complexes is

in fact a homotopy equivalence (an inverse up to homotopy can be constructed),

and (ii) CW complexes are filtered by "skeleta" which are related by means of

a construction called "attaching a cell". The first of these properties means that

equivalences can be detected by homotopy groups, and the second property sets

the stage for inductive arguments. Meanwhile, problems such as those presented

by the Warsaw Circle have been erased from consideration. By restricting atten-

tion to the problem of classifying significantly occurring homotopy types of CW

complexes, we are in a context where results can be obtained. Indeed, in 1950

at the International Congress of Mathematicians, Henry Whitehead delivered

a paper entitled Algebraic homotopy theory. He wrote, "The ultimate object of

algebraic homotopy is to construct a purely algebraic theory, which is equiva-

lent to homotopy theory in the same sort of way that 'analytic' is equivalent to

'pure' projective geometry." His indication of what had been accomplished at

that time has been, until the appearance of Baues's book, a high watermark for

the development of this subject in a certain direction.

The term "combinatorial homotopy" is generally understood to comprise
questions of characterizing homotopy types of CW complexes in terms of alge-

braic invariants and having the flavor of combinatorial group theory. In fact,
in low dimensions these two subjects have an extensive, overlapping history.

Briefly, the content of Baues's book is a theory for 3-types and 4-dimensional
CW complexes that runs parallel to the classical theory for 2-types and 3-

dimensional CW complexes. Much of the material is new research, presented
in this book for the first time.

To continue, we should have a definition for «-type. A space X (understood

to be a CW complex herein) is an n-type provided that its homotopy groups are

trivial in dimensions greater than n , n¡X = 0, i > n . Generally, «-types are

infinite dimensional in the sense that the CW filtration is infinite in a nontrivial

manner. Since dimension is such a natural notion, it may be worthwhile to

digress to a discussion of its relation to «-type. First of all, starting with an

arbitrary CW complex K and a natural number n , we can produce an «-type

by attaching cells in dimensions « + 2 and above to kill homotopy groups in

dimensions « + 1 and above. So we can introduce the notion of an associated

«-type, Kn , as an «-type together with a map K —> Kn inducing isomorphisms

of homotopy groups n¡ for i < n . This construction is known as a "homotopy

section" or a "Postnikov approximation". Obstruction theory shows that K and

L have equivalent «-types if and only if there is a map / : K —► L inducing

an isomorphism on 7í¡ for i < n. The cellular approximation theorem then

enters to show that a complex of dimension at most « +1 is sufficient to capture

the information contained in the associated «-type. The upshot is that while

the (« + l)-skeleton of K is not homotopy invariant, it does determine the
homotopy invariant «-type.

One can regard the subject of combinatorial homotopy as studying the con-

verse question of obtaining «-types from purely algebraic data. In this gen-

erality, the subject enjoys an internal tension represented on the one hand by
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"simplicial homotopy theory" (cf. [C]) and on the other hand by the material

treated by Baues. One aspect of this tension is reflected in the size of the kinds

of models in use. To gain some idea for the point of view developed in Baues's

book, let us discuss some features of the theory for 1- and 2-types.

Now a 1-type is just a space X whose universal covering space is contractible

(aspherical spaces in some contexts). In this case, the 1-type is completely

determined by the fundamental group. Two-dimensional models for a 1-type

can be obtained from a presentation of the fundamental group by generators

and relations. One attaches 2-cells to a "bouquet" of circles, a circle for each

generator. Attaching maps for the 2-cells are determined up to homotopy by

the relator words.

Next we have the 2-types. Here the determining algebraic data consists of

the fundamental group 7ii , the second homotopy group 712 regarded as a n\-

module, and the Eilenberg-Mac Lane "Â>invariant" k e H3(ni : 712).

Even though it is cumbersome to work in terms of 3-dimensional models

which determine the 2-type, it still may be instructive to see a construction. As

before, we use generators and relations for ii\ to construct a 2-complex L. Next

we join a bouquet of 2-spheres to L to form M, one sphere for each generator

of 7i2 (regarded as a 7ti-module if we wish to have a "small" model). The

k-invariant determines a surjective homomorphism <p : n2M -* n2. Enough 3-

cells are then attached to M to kill the kernel of q>. In the case where k = 0,

we could start with L equal to the 3-skeleton of the 1-type determined by

7Ti (the Eilenberg-Mac Lane complex K(ii\, 1)). Then it2M is a free Z\n(\-

module and the homomorphism <p is the beginning of a presentation for n2

as a n 1 -module. Rather than models, a more tractible object for the theory of

2-types is the "crossed chain complex". In the case of a CW complex X, the

crossed chain complex p(X) consists of the following data:

pn(X) = 7in(X" , X"-1),        «>2,

pl(X) = 7ti(Xi)

where Xk is the /c-skeleton of the CW filtration on X. There are "boundary"
maps

dn:pn{X)^ pn_x{X)

given by composition

nn{Xn , X"-1) - Tin^iX"-1) - nr.-dX»-*, X"~l)

from the homotopy exact sequences. The groups pn are abelian for « > 3

and are free Z[n^-modules on the «-cells. For « = 2, p2 has the structure

of a "free crossed-module", a notion developed by Whitehead to describe this
nonabelian group with operators. The 2-type is determined by the information
contained in p(X) for « < 3 .

We can now delve into the material in Baues's book. Its central novelty is the
notion of a quadratic module. These are groups with operators, together with

considerable extra restraints in the form of identities, satisfied by the opera-

tions and compatible with various homomorphisms. The notion of a quadratic

module stands in the same relation to 3-types as the notion of crossed-module

stands to 2-types. Before providing the definition, we describe its prototype in

group theory. Recall that if a group G is filtered by its lower central series

TlG = G, T2G = [G,G], r3G = [G,r2G],...



BOOK REVIEWS 411

then there is a map

w: C<g>C-> G/T3G

given by

{x} ® {y} -» [x, y]

where C is obtained by abelianizing G/Y^G. In addition, there is an exact

sequence

so the map w serves to measure the quadratic piece of G : If G is a free group,

then the kernel of w is T(C), where T is the quadratic functor constructed

by J. H. C. Whitehead. To give a bit more detail, we turn back to crossed-
modules to give some definitions. Let M and N be groups, d : M -+ N a

homomorphism; and suppose N acts on M, on itself by conjugation, and d is

equivariant. This action defines the structure of a crossed module if the action
satifies two other conditions, summarized in the commutative diagram:

M x M == M x M

dx\

NxM

Ixd

N xN  ——►      N

where the maps marked c are conjugation,

c(a, b) = a + b - a.

Indeed, commutativity of the lower square is equivariance of d . It is part of

the tradition of this subject to use additive notation, since the groups are hardly

ever abelian, and never mind that the term module is applied to something

nonabelian.

If only the lower square of the diagram above commutes, the structure is

called a precrossed module, and the difference of the two ways around the top is

called the Peiffer commutator. This combination of identities and compatibility

requirements is an example of what pervades the entire theory.

An analogue of the lower central series for groups can be defined for pre-

crossed modules using Peiffer commutators, with a "nil (2)-module" being the

analogue of a group with r3 = 0. If our precrossed module is a nil (2)-module,

we can obtain a map analogous to w above as follows. Let MCT be M with

additional relations to give a crossed module structure for the N-action. Let C

be the abelianization of Ma, regarded just as a group. Define

a>: C®C -> M

by {x} ® {y} -» -x - y + x + y9x , where the action of ./V on M is denoted

exponentially. The right-hand side is the Peiffer commutator, like the case
for groups.   We obtain the structure of a quadratic module when there is an

M

i»
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additional ./V-group, L, and a commutative diagram of jV-groups

C®C = C®C

M N

with dô = 0 and œ lifting the map defined w above. The lift œ is required

to be equivariant, where the action of N on C <8> C is given by the formula

({*} ® {y})a = {xa} ® {ya}

where, if x e M, we write {x} for its image in C. In addition, there are two

further requirements:

(i) for a, b e L
œ{{ôa}®{ôb}) = [a,b],

the commutator in L ;

(ii) the action of N on L satisfies,

adx = a + co{{x} ® {¿a} + {<îa} ® {x})

for a e L, x e M.
The two conditions (i), (ii) are lifts of identities satisfied by the Peiffer com-

mutator w . In the case for spaces, one obtains the following diagram, where

the quadratic complex of X is denoted a{X), and its structure is forced by

the presence of 2-cells:

C®C = C®C

a4

P4

CT3

I
P3

a2

Pi

0\

P\

-> n

-* n

where the bottom row represents the crossed-chain complex of X, the non-

isomorphisms are surjections, C = p2 made abelian, the part involving w and

œ is a quadratic module, and the columns are exact, among other things.

Next I will try to convey more of the content of the quadratic chain complex

a(X) without becoming overly technical. Just as there is a free crossed module

associated with a set of generators Z —> N, there is a free quadratic module

associated with a set of generators Z —> M. The groups in a(X) (while not

necessarily free) are free in the following senses. At the bottom, o\ (X) = p\ (X).

The two-cells in X determine a map Z2 —► p\{X) such that p2(X) is the free
crossed module corresponding to this data. Then

a2{X) - p2(X)

is the free nil (2)-module generated by the two cells. Thus p2{X) is a kind of

abelianization of a2(X) using the Peiffer commutator. Next cr3(AT) extends the

structure so far, to a free quadratic module, and

p3(X) & o3(X)/imco



BOOK REVIEWS 413

under the natural map. The nontrivial way that a{X) extends p(X) can be

sensed from the exact sequence

0^Afi ^C®C^ oi{X) -* p3(X) -» 0

where

Ab = TB + [B,K]c T(K)

with B, (K) representing the 2-boundaries, (2-cycles) of p(X) and F is White-

head's quadratic functor.  For « > 4, a„(X) = pn(X) as free Z[7r]-modules,

ä»jh(X).
Each of the objects a„(X) is free on a set corresponding to the «-cells of

X, but the generating maps for « = 2, 3 are not constructed directly. The

difficulty is that while the cell structure prescribes generating data for p(X),

the appropriate lifts of this data in

02   -►   P2 03   -►   Pi

î Î
Z3 Z4

needed to construct directly tr3 and the map o^ —► <r3 are not apparent in

the cell structure. Furthermore, one cannot lift these maps willy-nilly and still

expect a geometrically significant result.

Instead, a(V) can be constructed for a simplicial set V and the existence

of o(X) inferred from properties of as = a (SX) where SX is the singular
complex of X.

Three of the main theorems in the book are the following:

Theorem. The full homotopy category of 3-types is equivalent to the localization

of the category of quadratic modules with respect to weak equivalences.

Theorem. The full homotopy category of connected 3-dimensional CW complexes

is equivalent to the homotopy category of 3-dimensional totally free quadratic
chain complexes.

Theorem. The homotopy types of connected ^-dimensional CW complexes are

in 1-1 correspondence with the homotopy types of ^-dimensional totally free
quadratic chain complexes.

Here the term "totally free" implies that each object is as free as it can be while
the other usages are standard to the subject.

Computation can be made with this theory, and the text supplies many ex-

amples. The author seeks examples where the answer has interest independent

of the method. To mention just one, the group of based homotopy equiva-

lences of the 3-manifold obtained by taking the connected sum of two copies

of 3-dimensional real projective space is shown to be cyclic of order two. The

calculation strikes the reviewer as a good illustration of the theory in use.

The book develops its subject in six chapters. The first three review pre-

requisites. Chapter 3 provides a detailed and accessible account of the full

theory for 2-types. Already one has probably the best introduction to this part

of combinatorial homotopy theory available in textbook form. In Chapter 4,
the theory of quadratic modules is developed, and most of the main theorems
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are proved. Chapter 5, entitled Cohomological invariants, generalizes work of

J. H. C. Whitehead involving "Pontrjagin operations" as a system of invariants

for 1-connected 4-dimensional CW complexes. Chapter 6 is entitled The co-

homology of categories and the calculus of tracks, and I will not attempt any

description of its contents.
I can assert that the book is an admirably clear presentation. There are lots of

examples and plenty of illustrative calculation. The formal calculations needed

to put this subject in mind are carried out in great detail, far more than would

be appropriate in a research paper. The level is suitable for students with a

good background in homotopy theory, as in the early chapters of [W]. Given

this, the development is, for the most part, self-contained. The preparation of

this review forced me to come to some kind of understanding of this strange

material, so the review itself can be taken as an indication of the author's success
in presenting his material. I found no typos worth passing on. The typesetting
is attractive with superb layouts for diagrams.

My only cavil, and it is minor, concerns the manner in which J. H. C. White-

head's quadratic functor Y is introduced. There is nothing wrong, but I found

the treatment too terse. I would recommend the original account [Wh] as col-

lateral reading. For essentially the same reason, I would recommend as reading

collateral to Chapter 3 the paper by Mac Lane [M]. Both papers present their
topics in terms of generators and relations and (in my view) serve to put this

subject more firmly in mind.

The text is preceded by a preface written by R. Brown. It does a good job of

paving the way toward the new material, but I must quarrel with one statement.

Brown discusses the events surrounding the introduction of the higher homotopy

groups by E. Cech at the International Congress in 1932 and the subsequent

withdrawal of all but a short paragraph for the Conference Proceedings. At

that time several people observed that these groups were abelian. Brown writes,

"On these grounds, it seems, it was felt that the groups had to be the same as

the homology groups of the space." As Brown points out, the Hopf map was

already known, so he finds the whole situation "curious". My understanding has

been that it was the abelian nature of these groups that alone persuaded people

at that time to think that the higher homotopy groups must miss much of the

geometry, which was already understood (by J. W. Alexander among others) to

require nonabelian invariants beyond the fundamental group.

In conclusion, I can warmly recommend this book both to experts and to a

new generation of mathematicians who may be able to come to grips with this
tantalizing but unruly subject.
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