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appears to be the case now. Others have come again from mathematical physics,

in particular, as the ideas of Witten on topological quantum field theory have

proven their worth in three dimensions. A four-dimensional analogue, involv-

ing Floer groups, is a topic of much current research. Work is in progress on

the application of gauge theory to the geometry of a four-manifold with a fixed

embedded surface in it, thus answering some old questions of Thorn. These

are all topics in which the authors have a great deal of experience and exper-

tise. One can only hope that the lectures that current Oxford graduate students

are experiencing will eventually surface in a form similar to The geometry of

four-manifolds.

N. J. Hitchin
University of Warwick
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Differential equations can be divided into those that can be solved and those

that cannot. The first class is nearly exhausted by a sophomore "cookbook"

differential equations course. The study of the second class is roughly divided

into three approaches: qualitative, numerical, and asymptotic. The qualitative

approach (which, at least for initial value problems, more or less coincides with

"dynamical systems theory") gives up the attempt to find solutions and instead

seeks to describe the behavior of the solutions. (In many cases this is what one

wants the solutions for anyway.) The numerical approach obtains approximate
solutions in the form of tables or graphs. The asymptotic approach, otherwise

known as perturbation theory, also looks for approximate solutions but obtains

them as formulas. When these formulas are simple enough to comprehend, they

can reveal a great deal about the solution. At the simplest level, for instance, an

approximate formula for a periodic solution can immediately show the influ-

ence of each variable upon the period and amplitude. At a deeper level, it is in
the very nature of an asymptotic solution that its terms are sorted into orders

of importance. This forces the mathematician into a style of thinking that is

reminiscent of pragmatic common sense: when faced with a complicated prob-

lem, one asks which features of the problem are most important and attempts to

incorporate them into the solution first. In this way, guesswork (more politely

known as heuristics) comes to play an important role in the construction of so-

lutions, and proofs of validity (that is, proof of error bounds) get pushed to the

end. Often, because the mind-set needed for heuristics differs from that needed

for proofs, the proofs get ignored altogether. For many authors, if a solution

"looks" asymptotic (that is, if it is "uniformly ordered", as defined below) and

agrees well enough with numerical solutions, then it is good enough.

Is it good enough? Let us briefly examine what may be the paradigm case,
the case that gave rise to the name "perturbation theory".   Everyone knows
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that Newton "discovered the law of gravity". What this really means is that

he unified into one theory the previously separate subjects of "gravity" (falling

objects on earth) and the motions of the planets, thereby completing the break-
down (begun by Copernicus and Galileo) of the classical/medieval barrier be-

tween sublunar and superlunar phenomena. Newton was able to show that each

planet individually would move around the sun on a Keplerian ellipse, but he

was also aware that the planets would "perturb" each other's orbits due to their

own gravitational attraction. For this reason he postulated that God would in-

tervene occasionally to restore the planets to their proper orbits. Laplace (and

others) went on to calculate the perturbations approximately, concluding that

the solar system was stable and God's intervention was unnecessary. In fact,

the conclusion that the solar system is stable was unjustified, being based on

just the sort of heuristic approximate solution mentioned above. Clarification
of the issue involves both the difficult Kolmogorov-Arnol'd-Moser (KAM) the-

ory of invariant tori (which shows that most solutions behave as they would if

the system were stable) together with the Nekhoroshev theorem about Arnol'd

diffusion (which shows that the remaining solutions nevertheless behave stably

for very long periods of time, much longer than the age of the solar system). So

in this paradigm case, the conclusion based on heuristic approximations turns
out to be essentially correct for all practical purposes, but only after some very

difficult theoretical work. In some sense this evidence supports the validity

of the heuristic theory, but there are two points that I think are important to
make. The first is that although Arnol'd diffusion is unimportant in the solar

system, there are other much more rapidly oscillating systems in which Arnol'd

diffusion can take place in a short enough time to be of practical importance.

The second is that several years ago (and this experience is not at all atypical) I

received for review a paper that purported to prove that Arnol'd diffusion does

not exist. The "proof consisted of a heuristic approximation, essentially the

same as that done by Laplace (although much shorter, because of Hamiltonian

formalism that was not available at Laplace's time). Evidently there are still

large numbers of people being trained in heuristic asymptotic methods who are

not told any of the dangers inherent in these methods or any of the history of

the subject.
Admittedly, most topics in perturbation theory are not as delicate as KAM

tori and Arnol'd diffusion. For most purposes, it would be a sufficient advance

if everyone learning the subject was clearly taught the distinction between uni-

form ordering and uniform validity. This distinction hinges on the following

definitions. Consider a function f(x, e) defined for 0 < e < £o (possibly also

for e = 0) and for x (a scalar or vector) in a domain D(e) which may de-

pend upon e. (A typical example of such a domain would be 0 < x < e or

0 < x < 1/e, for x a scalar.) Consider also a finite or infinite series of the
form

g0(x, s)So(e) + gi (x, e)S{ (e) + • • • ,

where each g¡ has the same domain as /, and the a¡(e) are a sequence of

monotone increasing functions of e, called gauges, defined for 0 < e < £o and

satisfying

lim%# = 0.
£—o  d/(e)
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(The most common gauges are ¿,-(e) = e'.) Now the series is called uniformly
ordered if each g¡(x, s) with /' > 0 is bounded (for x e D(e) and 0 < e < e0) •

This guarantees that no term (except possibly the leading term) is of greater

significance (for small e) than is indicated by its gauge. Roughly, the terms are

arranged in order of importance, and their importance is correctly indicated by

their gauges. (Strictly speaking, we allow a term to be of less importance than its

gauge at certain points or even everywhere, but, except possibly for the leading

term, not of more importance. It is possible, for instance, for g¡ to vanish at

certain points x without requiring that later terms also vanish there. Under

certain circumstances a different set of definitions, involving relative rather than

absolute error, are more appropriate than are the definitions given above.) On

the other hand, the same series is called a uniformly valid approximation of f
if, for each k,

lim f(x, e) - g0(x, e)ôo(e)-gk(x, e)Sk(e) _

e-o Sk(e)

that is, if each truncation of the series gives an approximation to / with an error

of smaller order than the last gauge Sk retained. Now it is quite clear from these

definitions that uniform ordering is a property of the series itself, which can be

easily verified by examining the terms of the series, whereas uniform validity is
a relationship between the series itself and a function that it approximates and

can only be checked by examining the error. It happens that uniform validity

implies uniform ordering; in other words, failure of uniform ordering implies
failure of uniform validity. This fact motivates the most common procedure

in perturbation theory: one attempts to solve a differential equation by a se-

ries, rejects solutions that are disordered (not uniformly ordered), and modifies

the solution procedure (by using heuristic reasoning) until a uniformly ordered

series is obtained. If this procedure can be carried out successfully, one has
certainly found a reasonable candidate for a uniformly valid approximation to

a solution of the differential equation. It is entirely permissible for anyone to

stop here and to test the solution against experimental or numerical data. What

is not permissible is to claim that one has actually found a uniformly valid ap-

proximation to a solution of the differential equation. To make this stronger

claim, one must first of all have in hand a proof of the existence of the solution

in question. (Even this is unknown for some nonlinear partial differential equa-

tions that have been solved asymptotically.) Second, one must have a proof of

error bounds. This is not the place to go into this topic, except to point out that
for many classes of problems such proofs are known.

If these remarks are assumed to be understood, then it cannot be taken as

a fault that the book under review presents heuristic methods without proof

of validity (and without acknowledgment that validity is even an issue); this is

simply the task that the author has assigned to himself. Among such books, this

one is unique in that it gets very quickly into some of the more difficult and

touchy parts of the heuristic theory. There are many examples here of gauges
other than powers of e and particularly of logarithmic gauges. The useful sug-

gestion is made that for exploratory purposes, when the gauges are unknown, an

iteration method may reveal the correct gauges more easily than may a perturba-

tion method. There are examples showing the failure of "Van Dyke's matching

rules" (one of the heuristic methods in boundary layer theory) when there are
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logarithmic gauges and the superiority of the alternate (but equally heuristic)
method called "matching in an overlap domain" in this situation. There is a

short derivation of the asymptotic approximation to the limit cycle of a Van
der Pol oscillator in the relaxation case, a complicated problem involving sev-

eral different matchings between different domains. There is an example of the

use of the WKB method to study an exponentially small term in a boundary

layer problem, which leads to paradoxical results when it is treated by matching

alone.
As these examples indicate, the strengths of the book lie in the area of bound-

ary layers and matching. There is a short chapter on asymptotic evaluation

of integrals. There is some, but very little, attention to the third major area

within perturbation theory, namely, nonlinear oscillations. In contrast to the

boundary layer problems, all of the oscillatory problems treated in this book are

extremely simple: Duffing's equation is solved by Lindstedt's method, the Van

der Pol equation (in the nearly linear case, the opposite of the relaxation case

mentioned above) is solved by multiple scales, and a nonlinear wave equation

is solved by an averaged Lagrangian. Aside from the last problem there is no

mention of averaging, which is probably the most useful method in nonlinear

oscillations. (Nonlinear oscillations include celestial mechanics, from which,

as mentioned above, perturbation theory took its name; there are no celestial

mechanics included in this book.)
It is not entirely clear for which audience the book is intended; it would seem

to be difficult to find a reader who knows most of the things the author assumes

but not most of the things that he says. The book is much too short and sketchy

and hurries too rapidly into difficult examples to serve as an introduction. Yet

it does treat elementary topics, which would not be required by an advanced

reader. Most of the difficult examples are treated so briefly that they are best
regarded as exercises with ample hints. For the Van der Pol example, the reader

is expected to know immediately that Ä^/3 and /1/3 are Bessel functions (they
are never identified), to know their asymptotic properties, and to know how

they are used to solve Airy equations; all of this is passed over in one line.

An acquaintance with fluid mechanics is also assumed. The book will proba-

bly find its greatest usefulness as a reference book for those with considerable

background, but, for this purpose, one would wish for a better bibliography.

James Murdock

Iowa State University
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In crude terms, the Stefan problem is that of solving d/dt[u + H(u)] = Au

where u is the temperature of some material and H is the Heaviside function.


