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The area

Interpolation theory of functions has a long and interesting history, which,

roughly speaking, may be divided into three periods. The classical period, which
has its roots deep in the two previous centuries, mainly concerns scalar func-

tions and involves contributions of mathematicians such as Lagrange, Sylvester,

Hermite, Schur, Carathéodory, Toeplitz, Nevanlinna, Pick, Takagi, Loewner,

and Nehari. During this first period most of the work took place in a complex
function theory setting; methods of functional analysis and operator theory were

introduced by N. I. Akhiezer and M. G. Kreïn later in the thirties. The second

period begins after World War II and concerns matrix- (and operator-) valued
functions. Papers of Sz.-Nagy and Koranyi [32, 33] were among the first ma-

jor contributions. Many different approaches were invented with methods of

operator theory in a prominent position, and a rich theory was developed in-

volving the work of many outstanding mathematicians. First rate examples are

the commutant lifting approach by Sarason [30] and Sz.-Nagy and Foias [31]

in the sixties; the publications of the Potapov school (see, e.g., [27]); and the

series of papers by Adamjan, Arov, and Kreïn [1-5] in the seventies (see [29,
p. 45] for a more detailed survey).

In the early eighties the third period starts with the discovery that engineering
problems of the type appearing in mathematical system theory, in particular, in

control theory with an H-infinity optimality criterion, can be reduced to inter-
polation problems for matrix-valued functions of which the entries are rational

(i.e., quotients of polynomials). Glover's 1984 paper [16], which solved the

H-infinity model reduction problem in the time domain by using the Adamjan-

Arov-Kreïn solution of a vector-valued Nehari-type extension problem, was one

of the first results in this direction. This development led to a new field of re-

search in which the emphasis is on rational matrix functions and on the search
for explicit formulas of interpolants in a form which is suitable for control ap-

plications. Both the special interest in rational functions and the demand for

explicit formulas came from the engineering side. At the same time, system

and control theory provided a base for developing new tools that allowed one

to solve rational matrix function problems by linear algebra methods involving

finite matrices only.

The book

The present book belongs to the third period; it develops an interpolation

theory for rational matrix functions entirely in a system theory state space

framework. The precise meaning of the latter phrase will be explained later

in this review. First a few words about the type of problems considered. The

book treats homogeneous problems (when any nonzero scalar multiple of one



BOOK REVIEWS 427

solution is again a solution) and nonhomogeneous problems, both with and

without additional metric or norm constraints. Included are the rational matrix

analogues of the classical scalar interpolation problems of Lagrange, Lagrange-
Sylvester, Nevanlinna-Pick, Carathéodory-Toeplitz, Schur-Takagi, and Nehari,

which are nonhomogeneous in general, and the matrix analogue of the problem

of constructing a rational function with prescribed zeros and poles, which is

a homogeneous problem and has many different faces in the matrix case. In-

terpolation is understood in a rather broad sense. For instance, the problem

of finding a matrix polynomial with given remainders after division by vari-

ous other given polynomials is treated here as a nonhomogeneous interpolation

problem. A representative sample of some of the H-infinity engineering prob-

lems is also presented.

An example of the type of interpolation questions treated in the book is the

following problem, which appeared in the literature in a somewhat more general

form in the beginning of the seventies (see [15]). Find (if possible) a rational

m x r matrix function F that is analytic at infinity and satisfies the following
conditions:
(TNP1) F has all its poles in Re k < 0 ;

(TNP2) \\F{k)\\ < 1 for Rek > 0;
(TNP3) xiF{zi)=yi, i=\,...,N;       .
(TNP4) F(wj)uj = Vj, j=l,...,M;
(TNP5) if z, = Wj, then XjF'(zj)uj = p¡j.

Here zx, ... , zN and Wi, ... , wM are given points in Rek > 0 such that z, ^

Zj and w¡ ^ Wj whenever / / j. Furthermore, x\,... ,Xn and U\, ... ,Um

are given nonzero elements of Clxm and Cxl, respectively; y\, ... ,y^ and

V\, ... , vm are given vectors in Clxr and Cmxl, respectively; and py are

given complex numbers. The norm constraint in (TNP2) is of the type appear-

ing in the classical Nevanlinna-Pick problem. Conditions (TNP3) and (TNP4)

specify values of F(-) along directions on the left-hand and right-hand sides,
respectively; and therefore, one refers to the problem (TNP1)-(TNP5) as a

bitangential Nevanlinna-Pick interpolation problem.

Entirely in a system theory state space framework

The method employed by the authors is called the state space method (cf.,
[11]). It has its roots in the mathematical system theory of the sixties (see [26]

or [24]) and is based on the idea of state space realization. Recall that in the

Kaiman approach an input-output system is a set of differential equations of
the form

x'{t) = Ax{t) + Bu{t),        jc(0) = 0,

( } y(t) = Cx(t) + Du{t),

where A is a square (complex) matrix of order n , say, which acts on the state

space C" , and B, C, and D are matrices of sizes n x r, m x n , and m x r,

respectively. The system is assumed to be at rest at time t = 0 ; and hence, by

applying the Laplace transform, one sees that in the so-called frequency domain

the connection between input «(•) and output y(-) is given by y(k) = F(k)u(k),

where

(2) F(k) = D + C(kIn-A)-lB.
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Here, /„ is the n x n identity matrix. The matrix function F(-) is called the

transfer function of the system (1), and one calls (2) a (state space) realization of
F('). From (2) it is clear that F(-) is an mxr rational matrix function which

is analytic at infinity. A first basic fact from system theory, which is known

as the realization theorem (see [26]), states that conversely any rational matrix

function which is analytic at infinity may be realized as the transfer function of

a system of the type (1); in other words, any such function jF(-) can be written

in the form (2). The realization (2) is said to be minimal if the order n of the

state matrix A in (2) is as small as possible. Minimal realizations are unique up

to a state space similarity; that is, if (2) is a minimal realization of F(-), then

any other minimal realization of F(-) is obtained by replacing A , B, and C

by S~lAS, S~lB , and CS, respectively, where 5 is an arbitrary nonsingular

matrix. These facts allow one to deal with rational matrix functions in terms

of matrices, and in the book they are used to treat interpolation problems in a

linear algebra context.

Null-pole-triples

As a first step in the direction of interpolation, let us see in the state space

setting what is meant by the null-pole structure of a regular pxp rational matrix

function 8. Here, regular means that det 8 does not vanish identically. We

begin with the poles, i.e., with points ko in C where
oo

e(k) = 53(A-AoVe;-

has a nontrivial singular part zZjl-q(^~^o)J^j ■ Fix a subset a of C. The sum

of the singular parts of the poles of 8 in the set a is a rational matrix function

which is analytic at infinity and has the value 0 at infinity, and hence it admits

a minimal realization of the form C(k-A)~lB. Any pair (C, A) arising in this

way is called a right pole pair of 8 relative to a. By the state space similarity

theorem for minimal systems, pole pairs are unique up to similarity, i.e., any

right pole pair of 8 relative to a is of the form (CS, S~[AS), where S is

an arbitrary nonsingular matrix and (C, A) is as above. For the null structure,

8(')-1 is employed. A pair of matrices (A, B), where A is n x n and B

is n x p, is called a left null pair of 6 relative to a if (A, B) is a left pole

pair of 6_1 relative to a ; that is, there exists a p x n matrix C such that

C(k - A)~lB is a minimal realization of the sum of the singular parts of 8_1
in a.

In contrast with the scalar case, a rational matrix-valued function may have

a pole and zero at the same point; for example,

(3) 8(A) =(¿   Y)'        eW-' = (0   T)

both have an entry with a pole at zero. It follows that, in general, the null struc-

ture and pole structure of 8 on a are coupled. This additional information

may be encoded in the null-pole subspace which is defined as

8^,xl((T) = {e/z|/*€^xl((7)},

where ¿%px\(o) denotes the set of all rational Cpxl-valued vector functions

having no pole in a.  It turns out that given a left null pair (Ar, Br) and a
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right pole pair (Cn, An) of 8, both relative to a , there exists a unique nr x nn

matrix T (where nr. is the order of Ar and nn is the order of An) such that

e¿?pxl(o-) = {Cn(k-An)-lx + h(k)\xeC"*, Ae^xi((T) is

such that Tx is the sum of all the residues

of (A - A:)~lBch{X) intr}.

The quintet {Cn, An ; Ar, Br ; T} is called a (left) o-null-pole-triple for 8.
If 8 is given by a minimal realization, 8(A) = D + C(k - A)~lB, with D
invertible, then

8(A)-1 =D~l -D~1C(k-Ax)-lBD-i,        Ax :=A-BD-XC,

and a cr-null-pole triple for 8 may be constructed directly in terms of the
matrices A , B, C, D, and Ax by using elementary spectral theory. Indeed,

take P to be the Riesz projection of A corresponding to the eigenvalues of A

in a, let Px be the corresponding projection for Ax in place of A , and put

T = {C\imP, A\\mP; Ax\lmPx , PXBD~   ; PX\lmp} ■

Then x is a tr-null-pole triple of 8, and up to similarity any er-null-pole triple
of 8 is of this form.

Null-pole triples {Cn, An; Ar, Br; V} are a recent invention. Null pairs

appear for the first time (under the name of Jordan pairs) in the Gohberg-

Lancaster-Rodman analysis of matrix polynomials (see [18-20], and [21]). For
interpolation problems, it is important to know that such pairs may also be con-

structed in terms of null chains and null functions, which have a longer history

and originated in the work of Keldysh [25] on completeness of eigenvectors and
generalized eigenvectors for analytic functions of which the values are Fred-

holm operators acting on an infinite-dimensional Hubert space. Pole vectors

and generalized pole vectors have their roots in the Gohberg-Sigal paper [22].

The coupling matrix T, which satisfies the Sylvester equation

TA*-ArT = BrCn,

appears for the first time in 1987 in the Ball-Ran papers [9, 10]; a predecessor

may be found in [17]. The importance of null-pole triples follows among others
from the following result. Two regular rational matrix functions 8i and 82
have the same a -null-pole triple if and only if 81 (A) = 82(A)£'(A) for a rational

matrix function E(-) such that both E(-) and E(-)~l have no pole in a .

An illustrative example

How does the book use the above machinery to deal with interpolation prob-

lems? Let me illustrate this on the bitangential Nevanlinna-Pick interpolation

problem (TNP1)-(TNP5) mentioned above. The analysis starts with some

heuristic arguments. From earlier experience—for instance, from the classical
Nevanlinna paper [28]—one expects that if a solution of the problem (TNP1)-

(TNP5) exists, the set of all solutions F will be parametrized by a linear frac-
tional map,

(4) F(k) = (8n(A)G(A) + 812(A))(821(A)G(A) + 822(A))-',

where the free parameter G is an arbitrary mxr rational matrix function

which satisfies the conditions (TNP1), (TNP2). Since we want ||G(A)|| < 1 for
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Re A > 0 to imply ||.F(A)|| < 1 for Re A > 0, it is natural to assume that the

coefficient matrix 8(«) - (8,j(-))? -=, is a rational matrix function which is

/-unitary with respect to the imaginary axis, where / is the (m + r) x (m + r)

signature matrix Im © (-/r), i.e., one expects 8 to satisfy

(5) 8(-A)* Im
0 -\)

8(A)
0 -\)-

By taking G(k) = 0 in (4), one sees that 8i2(-)622(-)_1 has to be a solution of

(TNP1)-(TNP5), and hence 8i2(-)822(-)_1 must have all its poles in ReA < 0.
The latter is achieved by requiring that 8 is /-inner, i.e., 8 is /-unitary and

Re A > 0 and A not a pole.
(6)    8(A)* (7?   _°/r)e(A)<(7?   _°Ir),

Note that (4) implies

8(A) (Gf]^ (821(A)G(A) + 822(A))-1(T)
and hence (TNP3) will be fulfilled if 8 has a zero at s, with left tangential
zero row vector (x¡ - y¡). For (TNP4) an analogous result holds. To make

a precise statement also involving the condition (TNP5), use the interpolation
data in (TNP1)-(TNP5) to introduce the following matrices:

AC =

An =

V

Zl

Wj

B+

ZN ,

( M \
x2

\xNJ

B_ = -

fyx
yi

\yN-

V

and put

(7)

C_ = («i    ui---uM),     C+ = -(v¡    v2---vM),

wMJ

Si i =
-XjVj + y¡Uj

Zi - Wi
(¿i ¿ Wj), Pij    (¿i Wj

-m-An;Ar,(B+    5_);5
}■

It turns out that the problem (TNP1)-(TNP5) is solvable if and only if one can

find an (m + r) x (m + r) rational matrix function 8, which is nonsingular
on the imaginary axis, is /-inner (i.e., formulas (5) and (6) hold), and has the

quintet x in (7) as its right half plane null-pole triple. Furthermore, in that case,

all solutions F of (TNP1)-(TNP5) are of the form (4), where (©i/(A))?/oe, is

the 2x2 block matrix partitioning of 8(A) according to the decomposition

Noticeable features

The previous result is typical for the approach used in the present book. It
holds in a much wider context for various other interpolation problems, and

it reduces these interpolation problems to a problem of finding a coefficient
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matrix of a linear fractional map which, in general, is a rational matrix function
satisfying certain symmetry conditions and having a certain prescribed null-pole
triple. The book develops all the machinery to deal with problems of the latter
type. Typically, the solutions are sought as transfer functions in realized form.

The uniqueness of minimal realizations up to similarity often provides a hint for

the equations which have to be solved. For example, to find an (m + r) x (m + r)

rational matrix function 8, which is nonsingular on the imaginary axis, satisfies

(5) and (6), and has the quintet x in (7) as its right half plane null-pole triple,
one has to solve the following Lyapunov equations:

SiAJt<+Ä*S.i = ClC--ClC+,

{  ' S2A\ + ArS2 = B+B*+ - B_B*_ ,

which one can do explicitly because the matrices An and Ar have their eigen-

values in the open right half plane. Then a solution 8 exists if and only if the
matrix

-(*' I)
is positive definite. Furthermore, in that case, a 8 with the desired properties

is explicitly given by

°«=(o ?>(£: -£)(li-tr' „+V)A"'(t: £)•
For the case considered here, it is straightforward to solve the two equations in

(8). In fact, both S\ and S2 are Pick matrices, namely,

s m Muj-vtVj\M = (XiX*-y*yj\N

1     V   Wi + wj   )t'Jmi ' 2     V    Zi + zj    JtJml ■

Hence, the (N + M) x (N + M) matrix A is explicitly given; and to see whether
or not the interpolation problem (TNP1)-(TNP5) is solvable, one has to check
only that the eigenvalues of A are positive.

Recent developments [6-8] suggest that the approach sketched above has a

much wider range. Indeed, if one replaces the input-output system in ( 1 ) by a
time-varying system,

x'(t) = A(t)x(t) + B(t)u(t),        x(0) = 0,

U y(t) = C(t)x(t) + D(t)u(t),

and rational matrix functions by input-output operators of time-varying systems

of the type (9), then many of the interpolation problems discussed in the present

book have a natural time-varying nonstationary analogue (see also [12]). The

interesting fact is that an appropriate time-variant version of the state space
method can be used to produce solutions in much the same way as they are
constructed in the present book.

More about the book

The book has six parts and an appendix about Sylvester, Lyapunov, and Stein

equations. The first part (which consists of about 200 pages, a little less than

one third of the book) introduces zeros and poles, null vectors and pole vectors,
generalized null vectors and generalized pole vectors, chains of generalized null
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vectors and chains of generalized pole vectors, and builds in this way step by

step the null structure and the pole structure and the null-pole triples referred

to above. Here also appear the solutions of homogeneous interpolation prob-
lems which have a certain (local or global) null-pole triple as the given data.

Homogeneous interpolation problems with other forms of local data (for ex-

ample, problems based on divisibility) are treated in Part 2 (33 pages). The

description of null-pole triples in terms of the null-pole subspace (which we
used in this review) appears in Part 3 (78 pages), which treats various subspace

interpolation problems. Here one also finds a rational matrix-valued version of

the Beurling-Lax invariant subspace representation theorem and its recent Ball-
Helton version in spaces with an indefinite metric. Part 4 (61 pages) deals with

nonhomogeneous interpolation problems for rational matrix functions without
metric constraints like those of Lagrange and Lagrange-Sylvester. Also, the

partial realization problem from mathematical systems theory is treated here
as a nonhomogeneous unconstraint interpolation problem. The rational ma-

trix analogues of the classical scalar nonhomogeneous interpolation problems
with metric constraints of Nevanlinna-Pick, Carathéodory-Toeplitz, and Nehari

(including the problem (TNP1)-(TNP5) discussed above and its more general
version, which is called the Takagi-Nudelman problem) appear in Part 5 ( 124

pages). In general, the interpolation data are of rational type. Singular or de-

generate cases are not treated. The final part (55 pages) is entirely devoted to

problems of H-infinity control. Included are (the so-called one-block versions

of) the problems of sensitivity minimization, model reduction, and robust sta-

bilization. For these problems the engineering motivation is described, and the
reduction to interpolation problems of the type appearing in Part 5 is given and

used to provide explicit solutions in terms of the original data of the input-

output system. Each part concludes with a set of notes describing relevant
literature.

The material is nicely organized, and the book is pleasant to read. Many
illustrative examples are presented. The text is largely self-contained and re-

quires few prerequisites (linear algebra and some complex function theory will

do for most of the text). Part 1 could easily serve as notes for an advanced

linear algebra course on the general theory of rational matrix-valued functions.
Part 6 and a selection of Parts 1, 4, and 5 provide material for a mathematically
oriented graduate course on H-infinity control and interpolation.

There are various other methods to deal with rational matrix function in-
terpolation problems (see, e.g., the recent books Dym [13], Foias-Frazho [14],

Helton [23], and Woerdeman [34]). The present book is unique in the fact that
it remains entirely in a finite-dimensional context (which seems to be the nat-

ural mathematical environment for rational matrix-valued problems) and aims

directly at explicit formulas for solutions. In the latter, the book is very effective
indeed.
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