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Let N = {I, ... , n} be a finite set, and let 2 denote a collection of subsets

of N, containing TV and 0, which is closed under unions and intersections.

A set function /: 2 —► ÍH with f(0) = 0 is submodular if

f(S) + f(T)>f(SuT) + f(SnT)
for every S, T and element of 2. A function / is supermodular if -/ is

submodular. Let T(2) denote the set of all submodular functions on 2 . A

submodular system is a pair (2, /) where / is an element of T(2). Sub-

modular functions and systems have numerous applications in combinatorial
theory (where they arise as rank functions of matroids), game theory (in which
a supermodular function defines a convex game), and optimization theory (espe-

cially network problems). Not surprisingly, one can study submodularity from
many directions; the general theme of Santoru Fujishige's book is, as the title
indicates, the interplay of submodularity and optimization, which the author ac-

complishes by presenting many aspects of the polyhedral theory for submodular

functions.
To begin our review, we present some notation and definitions. In the dis-

cussion that follows, we will not present the author's most general results for

submodular systems but will instead assume throughout that 2 - 2N for ex-

positional simplicity. For any set function /, two associated polyhedra with

interesting structural properties are defined by

P(f) = {x e <K" | x(S) < f(S), for all S ç N}

and

B(f) = {xeP(f)\x(N) = f(N)}
where x(S) = Y,iesx¡- ^ f *s submodular, then P(f) is called the sub-

modular polyhedron for /, and B(f) is called the base polyhedron. If / is

submodular and monotone increasing (i.e., f(T) > f(S) if T D S), then / is

the rank function of the polymatroid (TV, /).

B(f) is related to two other set functions fp and / on 2N defined respec-
tively as

r

fp(S) = min53 f(Tk)   s.t. {Tx, ... , Tr) is a partition of 5
k=\

98
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and
f(S) = max x(S).

x€P(f)

fp is called the Dilworth truncation of /. For any set function /, B(f)^0 if

and only if f(N) — f(N). Many of the results and applications of submodular

functions also rely on properties of the dual function f* which is defined by

f*(S) = f(N) - f(N\S)   for all S ç N.

It is clear that / is submodular if and only if /* is supermodular and, for any

/, B(f) = -B(-f*).
Chapter I contains some notation and definitions from set theory, graph the-

ory, algebra, and convex analysis that are used throughout the book. Chapter II

begins with a presentation of the well-known relationship between matroids and

submodularity and introduces the various polyhedra associated with a submod-
ular function /. The main result in this chapter is that B(f) is nonempty if /

is submodular, but this need not be the case for general set functions /. There

are many generalizations of submodularity that also guarantee that B(f)^0,
and we will discuss some of these below. Chapter II continues with a discussion

of the extreme point structure of B(f) and the greedy algorithm for linear

programs, whose feasible set is B(f) for some submodular function /. The

central idea here, due to Edmonds (1970) and Shapley (1971), is that the ex-
treme points of the base polyhedron for a submodular function / are precisely
the "marginal worth vectors" for /. Let R be one of the n\ orderings of N.
R induces a binary precedence relation on the members of N. For each j £ N

define the set Xj(R) = {i e TV | / precedes j in R} . (If j is the first element
in the ordering R, then Xj(R) - 0.) Then the marginal worth vector for R
is defined to be the vector x(R) e SH" whose jth coordinate is

Xj(R) == f(Xj(R) U {j}) - f(Xj(R)).

The classic result states that, for submodular /, B(f) - W(f) where W(f)

is the convex hull of the set {x(R) \ R is an ordering of N} . As a result, a
submodular function can be characterized in terms of the success of the so-
called "greedy algorithm". This result can also be established using results not
discussed in the book but which are of independent interest. Weber (1988)

has shown that, for any set function /, B(f) ç W(f). Ichiishi (1981) has
shown that if W(f) ç B(f), then / is submodular. Hence, submodularity is
completely characterized by the equality of B(f) and W(f).

In many combinatorial optimization problems submodular (or supermodu-

lar) functions arise in a natural way. For example, Curiel, Pederzoli, and Tijs
(1988) consider a scheduling problem in which n customers must wait in a
queue for service by a single server. Each customer has a deterministic service
time s, and a linear cost function c,(i,) = c,i,, when waiting plus service time

is equal to t¡. If the customers are initially arranged in order R, the total cost

is given by J2"=\[cí(sí + 12jex¡(R) */)!' B^ a well-known result in scheduling the-

ory, the total cost can be minimized if customers are rearranged in decreasing

order of their "urgency" index defined by c¡/s¡. Curiel et al. demonstrate that a
function /, which defines the cost savings achievable by any set of customers, is
supermodular. Another example is the class of simultaneous network synthesis

optimization problems, which arise from the minimization of the total cost of
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establishing communications links among nodes in a network. Let r,; represent

the flow requirements between nodes i and j, and let d¡j represent the cost
per unit of traffic carried on a link between i and j . Granot and Hojati ( 1990)
demonstrate that the function /, which defines the minimum cost of satisfying
the flow requirements for every subset of customers, is submodular.

Many of the results of Chapter II are generalizations of the basic theory of

polymatroids, and the author focuses on generalizations to arbitrary submodular

systems. One could also generalize the notion of submodular set function; a
number of such extensions have appeared in the literature. Qi (1988) defines a

set function / to be "odd submodular" if there exists a partition J^ and J^ of
2N such that for each p = 1, 2 and any two intersecting sets 5, T e Jp (i.e.,

S\T ¿ 0, T\S Í 0, and SnT ¿ 0), f(S)+f(T) > f(SuT)+f(SnT). Every
submodular function is odd submodular. Furthermore, if / is odd submodular,

then f(S) = fp(S) for every S ç N because (as Qi shows) the polyhedron

P(f) is totally dual integral. Since fp = f for any subadditive set function, it

follows that B(f) ^ 0 if / is a subadditive odd submodular function.

Another generalization of submodularity is permutational submodularity, in-
troduced in Granot and Huberman (1982), where it is called permutational con-

vexity. A function / is permutationally submodular if there exists an ordering

R such that for each pair j, k and / e Xk(R) and each S ç N\Xk(R)

f(Xk(R) US)- f(Xk(R)) < f(Xj(R) US)- f(Xj(R)).
Every submodular function is permutationally submodular, and Granot and Hu-

berman show that the marginal worth vector x(R) for an ordering R satisfying
the above conditions is an element of B(f) so that B(f) ^ 0.

Permutationally submodular set functions arise from an interesting class of
combinatorial optimization problems that are important in the theory of games.
Consider the problem of connecting n nodes to some "source" node labelled 0.

For each (/', j) e (N U {0}) x N, c¡j is the cost of connecting nodes i and j .

For each S ç N, let f(S) be the cost of the minimum cost spanning tree for the
node set S U {0} . The resulting set function / is permutationally submodular,
and an element of B(f) can be constructed in the following manner: let R

be any ordering with the property that ;' € X¡(R) if ;' lies on the unique path
connecting i to 0 in the minimum cost spanning tree. Then the marginal worth
vector for R is the desired member of B(f).

Chapter III is devoted to neoflows, which are generalizations of classical flow

problems. The chapter begins with an algorithm for the intersection problem

max J2 *i   s-t- x € P(f ) n P(f2)
i€N

where f\ and f2 are submodular. The author then provides a generalization

of the polymatroid intersection theorem of Edmonds and uses this result to

prove a discrete separation theorem of Frank (1982). A problem related to

the intersection theorem is the common base problem—i.e., when is B(f\) n

B(h) ¥" 0? An affirmative answer can be given when f majorizes the dual of
f2. In particular, let f and f2 be submodular with f(N) = f2(N). Then
B(f)nB(f2) ji 0 if and only if f*(S) < f(S) for all S ç N. The remainder
of Chapter III is primarily devoted to an analysis of submodular flow problems
first presented in Edmonds and Giles (1977), with special emphasis on the
algorithmic aspects.
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Chapter IV, entitled "Submodular Analysis", develops a Fenchel-type duality

theory for submodular functions and applies the theory to constrained and un-
constrained optimization problems involving submodular functions. Briefly, let

/ be submodular and define the conjugate function f: 5R" —> 9Í as f*(x) =

maxS€2n{x(S) - f(S)} . Note that /* is convex and if / submodular, then

f(S) = maxxew{x(S) - f*(x)}. Furthermore, a subgradient theory can be

developed in a natural way. A vector u e ÍH" is a subgradient of f at S e2N

if f(S) + u(T) - u(S) < f(T) for each T e 2N, and the set of all subgradients
at S, the subdifferential at S, is denoted df(S). The subgradient theory for

submodular functions is analogous to that for convex functions as developed

by Rockafellar (1970), and there are numerous interesting parallel results. For

example, if / is submodular and S e 2N, then u e df(S) if and only if

S G d2f*(u) where d2f*(u) = {Te2N\ x(T) - u(T) < f*(x) - f*(u) for all
x e SH"}.

As noted above, many of the results from submodular analysis can be applied

to optimization problems involving submodular functions. For the simplest un-

constrained problem with submodular objective function min/(S1) s.t. 5 € 2N ,

it follows that T is a solution if and only if 0 € df(T). Fujishige has general-
ized this result to obtain a Kuhn-Tucker theorem for submodular optimization.

An alternative definition of subgradient is found in Qi (1988).

Chapter V concerns optimization problems whose feasible sets are the poly-

hedra associated with a submodular function / but whose objective functions

are nonlinear. In particular, the author considers several variants of the mini-

mization problem

minG(xi, ... , xn)   s.t. x€B(f).

The first case to be considered is that of separable convex minimization for

which G(x\, ... , x„) = J2?»i 8i(x¡), where each g¡: ÍH —» SH is convex. For

this problem, a "greedy algorithm" characterization of an optimal solution is
provided that generalizes the aforementioned result when each g¡ is linear.

In addition, a decomposition procedure [Groenevelt, (1985)] for computing

a solution is provided. Several other objective functions are treated, such

as the "max-min" problem in which G(x\, ... ,x„) = min;eAr{g,(x,)} and
the so-called "fair resource allocation" problem whose objective function is

G(xi, ... , x„) = q>(maxieN{gi(Xi)}, minieN{gi(Xi)}), where tp is increasing

in its first argument and decreasing in its second argument. Furthermore, an

analysis of lexicographic optimization on B(f) is given. For each of these

problems the author also discusses the version in which integer constraints on

the Xi are imposed.

An important recent application of this methodology, not mentioned in the

book, concerns the optimization of performance measures for queueing sys-
tems. In particular, consider a queueing system with n customer classes. Let

pi = Xi/pu be the utilization rate for class i where A, is the mean arrival
rate of the Poisson process generating arrivals of type /' and I//!, is the ex-
pected value of the exponentially distributed service time for class i. Finally,
let Wi be the expected waiting time for a customer of class /. The performance

vector W = (W\, ... , W„) is a function of the priority discipline. Federgruen
and Groenevelt (1988) have demonstrated that for certain queueing systems the

set of performance vectors obtainable from some preemptive work-conserving



102 BOOK REVIEWS

discipline has the mathematical structure of the base polyhedron of a submod-

ular function.
More precisely, W is attainable using a work-conserving preemptive disci-

pline if, for every S ç N, ZieSPiWi > f(S) and zZi€NP>w> = fW > where
f(S) represents the average work in the system when only the customer classes

in S are served. Hence, the attainable performance vectors correspond to the

base vectors in the polyhedron B(f*). That is, if (x\, ... , x„) e B(f*), then
(W\, ... , W„) = (xi/pi, ... , x„/p„) is an attainable performance vector. With

this characterization, one can choose priority disciplines so as to optimize some
function of the associated performance vector. If / is supermodular (so that

/* is submodular), then the techniques of Chapter V are applicable.
This book is a well-written and thorough treatment of the relationships of

submodularity to optimization theory that have been studied in the last decade.

It will be a very useful reference for researchers and graduate students working in

discrete mathematics, operations research, and game theory. One minor caveat
should be mentioned. A number of theorems have maintained hypotheses that

are stated only at the beginning of the sections in which the theorem is found.

As a result, a reader using the book as a reference source should be careful to

identify the context in which results are presented.
We close with a few observations regarding the (nonempty) intersection of

game theoretic concepts and ideas that are important in submodularity theory.
The important (game theoretically motivated) paper of Shapley (1971) is cited

throughout the submodularity literature, but many more concepts have been
independently studied by researchers in both areas using techniques that are

often similar. In game theory, a set function f with f(0) — 0 is called a

"worth function" and a pair (N, f) is a cooperative game in coalitional form.

/ is superadditive if f(S) + f(T) < f(SuT) whenever 5n T = 0 . The "core"
of / is the set

C(f) = {x e W | x(S) > f(S) and x(N) == f(N)}.

(In the game theory literature, the polyhedron B(f) as defined in this review
would be referred to as the "anticore".) One of the fundamental problems in

game theory is to identify classes of games for which the core is nonempty. A

supermodular set function defines a "convex game", since such a set function

exhibits "increasing returns" to coalition size. It follows from the results de-

scribed above that the core of a convex game is nonempty. The function /SA
defined by

m

fSA(S) = max 53 f(Tk),    where {Tx,..., Tm} is a partition of S ,
fc=i

is called the "superadditive cover" for / and is an obvious analogue of the

Dilworth truncation.
The function fh defined by

fb(S) = max 53 h-ftT) s.t. 6T > 0   and        53    ôs = l for each l e N
TCS SÇN : i€S

is called the "balanced cover" of /. A game is "balanced" if fb(N) = f(N) and

"totally balanced" if fb(S) = f(S) for every S. A fundamental result in coop-
erative game theory, due to Bondareva (1962) and Shapley (1967), states that
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a game has a nonempty core if and only if it is balanced and every "subgame"

has a nonempty core if and only if the game is totally balanced. Analogous re-

sults for base polyhedra have been derived by Qi (1988). Qi calls a function /

"discrete convex" if f(S) — f(S) for every S ç N and "generally subadditive"

if -/ is totally balanced. As a consequence of LP duality, he proves that / is
discrete convex if and only if it is generally subadditive. This is a restatement

of the Bondareva-Shapley theorem.

In the game theory literature there are several classes of functions more gen-

eral than supermodular functions that are contained in the class of totally bal-

anced set functions. For example, Schmeidler (1972) defines the function / to

be exact if f(S) = f(S) for every S ç N where f(S) = minxeC(f)X(S). It

is clear that / is exact if and only if f*(S) = maxxeB^t)x(S) for every S.

If / is exact and superadditive, it follows that both / and —/* are totally

balanced, and Shapley (1971) has demonstrated that a supermodular function is

exact. Other interesting classes of functions related to supermodular functions

have been studied by Sharkey (1982) and Ichiishi (1990). These results, which
were derived independently of the literature on submodular optimization, could
benefit from a reexamination in terms of the results that Fuijishige presents. At

the same time, researchers who are active in optimization theory might benefit

from a thorough study of related results in the game theory literature.
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Finite soluble groups, by Klaus Doerk and Trevor Hawkes. De Gruyter Exposi-

tions in Mathematics, vol. 4, de Gruyter, Berlin and New York, 1992, x +
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This is an account of the development of the theory of finite soluble groups

over the last thirty years, concentrating on "those parts of the subject where a

coherent and unified body of knowledge has emerged": the theory of Schunck

classes, formations, and Fitting classes of soluble groups with their associated

subgroups. My first impression of the book was of its size. It contains almost

900 pages, including indices and appendices. It is written carefully and clearly
and will become, as the authors hope, "a basic reference [for soluble groups],

a text for postgraduate teaching, and... a source of research ideas and tech-
niques". The book is about finite groups, but of course infinite groups turn up

at times, for example, when working with groups associated with infinite fields

or with Fitting classes. Again, the book is about soluble groups, but the authors

often explore "insoluble territory to see where the soluble theory leads".
A group G is said to be soluble if it has a series of subgroups G = Go >

G\ > •■ • > G„ = {1} such that (7, is a normal subgroup of G and G¡-i/Gj is

abelian for all i.
The two fundamental results on which the theory of finite soluble groups has

been built are the theorems of Sylow and Hall. Sylow's theorems state that, for

aprime p and a finite group G of order pam with p not dividing m, G has a

unique conjugacy class of subgroups of order pa , now called Sylow p-subgroups

of G, and any p-subgroup of G is contained in a Sylow p-subgroup. In 1928

Hall [6] published a far-reaching generalisation of Sylow's theorems for soluble

groups. Let n be a set of prime numbers, and let G be a finite group. The

order \G\ can be factorised as nm where « isa n -number (that is, all its prime
factors lie in n) and m is a 7r'-number (none of its prime factors lie in n).

A subgroup whose order divides n is known as a n-subgroup, and a subgroup

of order n is now known as a Hall n -subgroup. What Hall proved was that if

G is soluble, then G has Hall ^-subgroups, they form a single conjugacy class,
and any 7t-subgroup is contained in a Hall 7i-subgroup. In 1937, nine years

later, Hall went on to show that this fact actually characterises finite soluble


