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Noncommutative geometry emerged as a branch of mathematics at the end
of the Grothendieck era. Originally its goal had been to geometrize arbitrary
noncommutative rings, i.e., first to associate to a noncommutative ring a "non-

commutative spectrum" by extending the construction of the prime spectrum

of a commutative ring and then to "glue" these spectra into a "noncommutative
scheme". The glueing problem turned out to be very difficult, and it does not

seem to have been solved in a way meeting initial expectations. A reason is that

general noncommutative spectra are not sufficiently functorial in order to be lo-

calized (or glued together) in the usual fashion. However, this is an active field;

for an essential recent development see [1]. It is remarkable that, nevertheless,

noncommutative geometry has made outstanding progress and has in the last

decade been constantly among the "hottest" subjects in pure mathematics as

well as in mathematical physics. This is because since the 1970s the very idea

of noncommutative geometry has become much more complex. Today this

is one of those fascinating subjects which ignore customary interdisciplinary

boundaries and where, for instance, algebraic geometry in characteristic p and
Feynman integrals live together.
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A major development which practically redefined the whole subject was Alain

Connes's functional analytic approach to noncommutative geometry. The sup-

ply of rings to be "geometrized" here are noncommutative C*-algebras, but what
is crucial is that, bypassing local models, Connes has been able to construct di-

rectly AMheoretical and differential geometric invariants of the hypothethical
noncommutative spaces. An essential tool he used was has famous noncom-

mutative analog of de Rham's complex. Connes's ideas have proven to be very

successful and are dominating today.

Another landmark in noncommutative geometry of the 1980s was Vladimir

Drinfeld's construction of quantum groups around 1982. He discovered that

earlier work of Ludwig Faddeev and his school on solutions of the Yang-Baxter

equation leads to remarkable noncommutative (and noncocommutative) Hopf

algebra deformations of the function algebras of classical Lie groups. These
new Hopf algebras are the "function rings of quantum groups". Quite quickly

quantum groups and their representations became a new field of mathematics,

which then expanded and now fully deserves the name quantum geometry. But

as in Connes's noncommutative geometry, the emphasis in quantum geometry

also shifted away from the original geometrization idea. Here the emphasis
seems to be more on "quantizing" commutative geometry, i.e., deforming in
a suitable way usual function rings and sheaves over them and then dealing

with the deformed objects as if they were functions and sheaves on "quantum

spaces". A beautiful example of a subject where quantum geometry merges with

Connes-style geometry is quantum tori and Manin's quantized theta functions;
see [2; 3, Chapter 6, §4].

Finally, since the mid-1970s there has been a third branch of noncommu-

tative geometry where Grothendieck's methods have been highly successful—

supergeometry. Here the rings to be geometrized are Z2-commutative or super-
commutative. Supergeometry was given birth by Felix Berezin, who, inspired by

the work of physicists aiming at a "super"-unification of bozons and fermions,

realized that this idea has fascinating and far-reaching pure mathematical con-

sequences. Berezin introduced, in particular, an analog of the determinant and

a quite funny integration procedure of functions with Grassmann variables,

known today respectively as the Berezinian and the Berezin integral. After the

Grothendieck machine was made to work in its full power for supergeometry

(by Berezin himself, Dmitry Leites, Yuri Manin, and others), a very nice feature

came to the surface; namely, supervarieties can be smooth in spite of the nilpo-
tent functions incorporated in their definition. In other words, when dealing

with Grassmann nilpotents instead of usual commutative nilpotents, the stan-

dard contradiction between smoothness and nilpotent functions miraculously

disappears. Yuri Manin has made fundamental contributions to algebraic su-
pergeometry, one of which certainly is the construction of flag supermanifolds.

Flag supermanifolds are as central in algebraic supergeometry as the projective

space in algebraic geometry and are crucial in the geometric approach to rep-
resentation theory to classical Lie supergroups. The Lie superalgebras of the
latter have been classified by Victor Kac in his pioneering paper [4].

Manin's recent book targeted by this review is devoted mostly to supergeome-

try and quantum geometry. It is a collection of topics unified just by the general
philosophy of noncommutative geometry and by apparent mathematical beauty.

"The choice of material was dictated by personal interests of the author," says
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Manin in the preface. The first chapter is an overview (and a very stimulating

one) of the whole book, and each of the remaining chapters can be in principle
read (or consulted) separately. The book is by no means introductory; another

quote: "We have chosen not to explain foundations and first examples, but to

develop ... concrete and fairly advanced subjects ... ." This concerns mostly

the supergeometric chapters, but to some extent applies also to the rest.

Now I would like to go over the contents. As I previously stated, Chapter 1 is
an overview of the book. The first section, "Sources of noncommutative geom-

etry", addresses a broad mathematical audience and explains in an enlightening
way how geometry (in particular, algebraic geometry), functional analysis, and

physics contributed ideas to the emerging field of noncommutative geometry. I
would recommend it to all readers of the Bulletin who have not closely followed

the development of the subject in the 1980s. The remaining three sections are

more technical overviews of major topics in noncommutative geometry. Section

2 reviews some algebraic aspects of Connes's theory including noncommutative

de Rham cohomology and cyclic cohomology. Section 3 is entitled "Quantum

groups and Yang-Baxter equations". Here Manin introduces quantum groups

via Yang-Baxter operators and reviews this approach, which goes back to Fad-

deev and his collaborators. The last section in this chapter is §4, "Monoidal and
tensor categories as a unifying machine". This is a brief introduction into the
formalism of monoidal categories with special attention to categories of repre-
sentations of quasi-triangular Hopf algebras and quasi-Hopf algebras. Manin
explains also why monoidal categories can be viewed as a unification base (at
least) of quantum geometry and supergeometry.

Chapters 2 and 3 are devoted entirely to holomorphic supergeometry. This

is an enormous field which is yet somewhat unevenly explored. The two big
topics chosen here by Manin are among the best developed ones and are a good

advertisement for the whole theory. Chapter 2 is entitled "Supersymmetric
algebraic curves". This is the most complete exposition of this subject of which
I know, and it contains many new results. Probably it will serve for some
time as a universal reference. First of all, let me note that there is no obvious

definition of a "superalgebraic curve". If S is a complex 1|/V dimensional

supermanifold, then a St/ST/v-structure on S (SUSY-from swpersymmetric)
is a locally direct locally free subsheaf ¿TN of rank 0| N in the tangent sheaf
STs for which the Frobenius form

t\ A h -> [íi, h]    mod ¿TN

is nondegenerate and locally has an isotropic direct subsheaf of rank 0|[yV/2].
However, the behaviour of the pairs (S, SÍ7SY)v-struciure on S) depends es-
sentially on N, and probably only for N = 1, 2, 3, 4 are these candidates for

the name "supercurve". Manin restricts himself to the consideration of the cases

N — 1 and N = 2. The case N = 1 is especially neat. For instance, if (z\Q
is a local coordinate system on S, then the sheaf of vector fields of the form

f(z, Ç)(d/dC + Çd/dz), f being a holomorphic (super)function, can be taken

as y1 and thus defines a local SUSYi-structure on S. In the first section of
the chapter Manin introduces the conformai symplectic supergroups C(2m\N)

and the projective conformai groups PC(2m\N) and relates them to the basic
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examples of Si/ST^-curves: the Riemann superspheres P1|Af (N = 1, 2) and

the Lobachevski superplane (N — 1). Next he presents the general definition of

a SEAST/vr-family (a St/ST/v-structure on a family of relative dimension 1|/V)

and then extends the Schottky uniformization technique to the supercase, con-

structing, in particular, some beautiful Si/ST^-families which he conjectures

to have natural universality properties. The following two sections are devoted

respectively to automorphic Jacobi-Schottky superfunctions and to superprojec-

tive structures on SUSY\-families. In §§5 and 6 Manin discusses the Virasoro

and Neveu-Schwarz Lie (super)algebras and, in particular, carries out his con-

struction [5] of the Neveu-Schwarz Lie superalgebras via S US Y\ -families. It

is based on Alexander Beilinson's and Vadim Schechtman's deep approach to

the Virasoro algebra via algebraic curves [6]. The final two sections are devoted

to the very intriguing topics of elliptic 5USY\ -curves and supertheta-functions.

Manin discusses here some very nice results of Andrey Levin which shed light

on the still unclear notions of a "superabelian variety" and of a "super-Jacobian
variety" and which explain in particular that elliptic SUSY\-families are not

algebraic supergroups. This chapter is completed by a short discussion of Igor

Skornyakov's results on ü-invertible sheaves on supermanifolds (i.e., locally

free sheaves S? of rank 111 with a fixed isomorphism between S? and ILS17,

ELS57 denoting the sheaf of opposite parity) because of their relevance to the

problem of supertheta-functions.
Chapter 3 is entitled "Flag superspaces and Schubert supercells". As I al-

ready mentioned, it was Manin who constructed the complex flag superspaces

in 1980. Here he just recalls the functors they represent and then goes on to the

discussion of Schubert supercells, which are actually his object of study in this

chapter. Roughly speaking, the first main result is that the (super)dimensions of

Schubert supercells are expressed in terms of the superlength function on the flag

Weyl group. For Lie supergroups there is no obvious analog of the Weyl group,

and the flag Weyl group is a version of the Weyl group which is very useful for

computations with flags in the standard representation but unfortunately lacks

some other properties of the Weyl group (and is not defined intriniscially in
terms of the Lie superalgebra). Next Manin introduces the schematic closures

of Schubert supercells and proves an analog of the classical relation between

closures of Schubert cells and order in Weyl groups. These are joint results

of Manin and Alexander Voronov [7]. Voronov continued this work by con-

structing a Bott-Samelson-type desingularization of the closures of supercells
[8], which Manin also presents. In the final section of this chapter it is shown

that flag superspaces are nothing but factors of the corresponding classical Lie

supergroup by arbitrary parabolics, and a description of parabolics in terms of
roots is given.

In the fourth and final chapter we are back in the "quantum world" (or rather

"quantum superworld" because a Z2-gradation is assumed also in this chapter).

Manin's objective here is to present his method of constructing quantum groups

as "automorphism groups" of "quantum (super)spaces". He does this in a quite
general setting, extending his earlier results from [9, 10]. However, the under-

lying idea of this process is so simple and so enlightening that I cannot resist
presenting it here (if you are an expert, please skip the next few lines). Assume

one replaces the usual 2-dimensional space of vector-columns ( x\ ) by the space
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of "quantum vector columns" ( * ), i.e., pairs of formal variables x, y satisfy-

ing the commutation relation yx - qxy, where q is a formal parameter. The

question is, could one still interpret the endomorphisms of this space as 2x2-

matrices acting on the vector-columns by left multiplication? The answer is yes

if one agrees to consider matrices (abd) with entries a , b, c, d satisfying the

commutation relations ca = qac, db = qbd, ad - da — q~lcb - qbc. The
2 x 2-matrices which together with their transposes satisfy the above relations are

by definition the quantum 2 x 2-matrices. The quantum group GLq(2) of "en-

domorphisms" of the "quantum space of vector-columns (*)" is by definition

the algebra M9(2)[D~i], where Mq{2) is the algebra generated by the entries

of quantum 2 x 2-matrices and D = ad - q~lbc is the quantum determinant.

This way of constructing GL?(2) differs from Drinfeld's original approach.
I learned it first in 1986 at Yuri Manin's seminar in Moscow. Generalizing

this idea, Manin constructed in [9] the quantum group of endomorphisms of

any "quantum space" corresponding to a quadratic algebra. In this book he

presents an even more general construction of the endomorphisms of the quan-

tum (super)space corresponding to any Z2-graded algebra A with a fixed finite-

dimensional space A\ of generators. As an application of this construction,
Manin obtains the multiparameter general linear quantum supergroups, which

he had constructed earlier in [11]. He also proves a Poincaré-Birkhoff-Witt

theory for them, which, however, holds only for finitely many one-parameter

subfamilies. A special section is devoted to the case of regular quantum spaces;

these correspond to Gorenstein Z-graded algebras A — 0m>o Am with Aq = k

(k being the base field) which are generated by A\, dimA¡ < oo, and are of

polynomial growth. For dimA\ = 2 any such algebra turns out to be isomor-

phic to k(x, y)/(f), where either / = yx - qxy, q / 0, or f = xy-yx-y2.
The first case corresponds to GLg(2) (in the sense that GL?(2) is the auto-

morphism quantum group of k{x, y)/(yx - qxy) and its dual algebra), and

Manin presents the explicit formulas also for the second case. For instance,
here the determinant of {abd) equals ad - b(c + d) = da - (c + d)b\ Among

larger regular algebras Manin gives special consideration to Frobenius algebras

A, i.e., algebras such that for some d dimAd = 1, divs\Am — 0 Vw > d,
and the multiplication Am <g> Ad_m -* Ad is a nondegenerate pairing for all

0 < j < d. This chapter is completed by a brief discussion of quantum tori
and quantum theta functions (after this book had been completed Yuri Manin
wrote his much more detailed paper on quantum theta functions [3]).

I like the book a lot. First, because of the excellent mathematics it con-

tains. But second, because of the truly enlightening way this mathematics gets
conveyed to the reader. For many years now Yuri Manin has been generously
sharing his insights with the mathematical community and has in this way in-
spired an amazing amount of research. In particular, a significant portion of

the results in this book that he credits to others has been obtained either under
his direction or as answers to his questions. I am sure that the book will be a
strong catalyst for further research.
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Suppose that / € Q[T] is a polynomial with rational coefficients. If / is

irreducible, then the quotient ring Q[T]/(f(T)) is a number field, i.e., it is a
finite extension of Q. Conversely, it is well known that every number field

can be obtained in this way. Multiplying f(T) or T by a rational number if

necessary, we may and do assume that f(T) is, in fact, a monic irreducible
polynomial with integral coefficients.

The basic arithmetical invariants of the number field F = Q[T]/(f(T)) are
its ring of integers, the unit group of this ring, and its ideal class group. An-
other important invariant, perhaps algebraic rather than arithmetic, is the Galois
group G of / or, more precisely, the Galois group of a normal closure of F

over Q. The group G is a transitive subgroup of the group of permutations of

the roots of /.
In a first course in algebraic number theory it is usually first proved that the

ring of integers, i.e., the integral closure R of Z in F, is a Dedekind ring.
This ring is not, in general, a principal ideal ring or even a unique factorization
domain. Next, one introduces the ideal class group Cl(R) of R ; this is the

group of fractional iî-ideals modulo the subgroup of principal fractional ideals.


