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Suppose that / € Q[T] is a polynomial with rational coefficients. If / is

irreducible, then the quotient ring Q[T]/(f(T)) is a number field, i.e., it is a
finite extension of Q. Conversely, it is well known that every number field

can be obtained in this way. Multiplying f(T) or T by a rational number if

necessary, we may and do assume that f(T) is, in fact, a monic irreducible
polynomial with integral coefficients.

The basic arithmetical invariants of the number field F = Q[T]/(f(T)) are
its ring of integers, the unit group of this ring, and its ideal class group. An-
other important invariant, perhaps algebraic rather than arithmetic, is the Galois
group G of f or, more precisely, the Galois group of a normal closure of F

over Q. The group G is a transitive subgroup of the group of permutations of

the roots of /.
In a first course in algebraic number theory it is usually first proved that the

ring of integers, i.e., the integral closure R of Z in F, is a Dedekind ring.
This ring is not, in general, a principal ideal ring or even a unique factorization
domain. Next, one introduces the ideal class group Cl(R) of R ; this is the

group of fractional iî-ideals modulo the subgroup of principal fractional ideals.
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By means of Minkowski's techniques of geometry of numbers, one shows that

Cl(R) is a finite abelian group. The class group is trivial precisely when R is a
principal ideal ring or, what boils down to the same thing, a unique factorization
domain. Finally, it is shown that the unit group R* is finitely generated. This

last theorem is due to Dirichlet and is usually proved by applying Minkowksi's

results to a lattice that one obtains by taking logarithms of the absolute values
of the units in R*.

The question arises, given the polynomial /, how to compute the Galois

group G, the ring of integers R, its class group Cl(i?), and the unit group
R*. Moreover, this question can be asked in a variety of ways. For instance,
can these invariants be computed in principle? They can. Most textbooks do
not even discuss this fundamental question. Wanting more, one could ask for

efficient algorithms to calculate the invariants. This question can be studied
asymptotically, i.e., for the parameters of the polynomial / such as the degree
and the size of its coefficients, tending to infinity. This is Lenstra's point of view

in his recent paper in this Bulletin [2]. The question can also be considered from

a more practical point of view: one is interested in algorithms that can actually

be programmed on a computer and that give answers in a "reasonable" amount

of time for polynomials / of a "reasonable" size. This is the point of view of
the authors of the book under consideration.

The book under review is a six-chapter course in algebraic number theory with

special attention for the computational aspects. Chapter 1 provides an introduc-

tion. The authors introduce their often original and usually rather cumbersome
notation and conventions. They insist, for instance, in also dealing with rings

without a multiplicative unit element 1. The usual rings are here called "unital".

The decision is motivated by pointing out that most ideals are rings without 1,
while ideals are, of course, just modules that happen to be contained in the ring
itself. In this chapter the authors also discuss, in a somewhat mysterious way,
one of the foundational principles of their subject:

The "permanence principle" as established by Peacock and his
British contemporaries implies that any number system should
satisfy the axioms of a commutative ring. In general terms the

task of constructive algebra assumes the following form. Let a

commutative ring R be given in such a way that for any two of
its elements a, b

(i) there is a clearcut answer whether a is equal to b (a = b) or
whether a, b are distinct (a^b);

(ii) there are elements a + b, a - b, ab of R explicitly known

(viz. sum, difference, product of a, b) such that the axioms of

a commutative ring are satisfied.

Then we say that the commutative ring R is given construc-

tively. For example, the rational integer ring Z as introduced
in customary high school mathematics is constructively given.

In Chapter 2 the authors prove the main results of Galois theory and explain

how to compute the Galois group of a given polynomial. A useful list of tran-

sitive permutation groups of degree < 12, together with the relevant invariant
polynomials, is given at the end of the book.
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Many of the objects considered in algebraic number theory, such as rings of

integers, ideals, and the unit groups modulo torsion, have, in a natural way, the
structure of lattices; i.e., they can be viewed as free abelian groups that span

vector spaces equipped with a scalar product. For computational purposes it

is important to have good algorithms to do calculations in lattices available;

these are discussed in Chapter 3, which deals with the geometry of numbers. It

includes a discussion of Minkowski's convex body theorem and the more recent

algorithm due to Lenstra, Lenstra, and Lovász to find a "good" basis for a given

lattice.
The ring Z[T]/(f(T)) is contained in the ring of integers of F =

Q[T]/(f(T)). Its index in the ring of integers R is finite. In Chapter 4 methods

to compute R starting from Z[T]/(f(T)) are described. Dirichlet's Unit The-
orem is proved in Chapter 5. The proudly announced "logarithm free" proof

appears to be the usual proof with the exponential function applied to it. Fi-

nally, the class group is discussed in Chapter 6. In this chapter we also find

the often-repeated and probably untrue story in which Dirichlet pointed out a

mistake in a proof by Kummer of Fermat's Last Theorem. See Edwards's text

[ 1 ] for a more reliable account.

Needless to say, the last two chapters contain descriptions of algorithms to

compute unit groups and class groups respectively. The book ends with a series

of tables of number fields of low degree and small discriminant together with

their rings of integers, unit groups, and class groups. Curiously, the complex

quadratic fields are omitted.
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The cohomology of groups, by Leonard Evens. Clarendon Press, Oxford, 1991,

xii+159 pp., $39.95. ISBN 0-19-853580-5

Let G be a group and consider the functor on G-modules sending M to
MG, the submodule of elements fixed by G. The right derived functors of this

are, by definition, the cohomology groups Hn(G, M) of G with coefficients

in the G-module M. Since MG = HomZc(Z, M), we can also simply define
Hn(G, M) to be ExtZG(Z, M).


