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The prototypes of the ergodic theorems treated in this book are the following

two classical results.

The pointwise ergodic theorem [G. D. Birkhoff, 1931]. Let T be a measurable

measure-preserving transformation of a a-finite measure space (Q.,3r,m) and

f € If = Z/(Q, SF, m) for some p > 1. Then for m-almost all œ e Í2 the
limit
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exists and is T-invariant.

The mean ergodic theorem [J. von Neumann, 1932]. Let U be a linear isometry

of a Hilbert space H and h e H. Then the limit
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exists (in the Hilbert space norm) and is U-invariant. In particular, setting

H = L2 and Uf — f °T, it follows that, for f e L2, the convergence in ( 1 )
also holds in the L2-sense.

The adjective "ergodic", which may be circumscribed as "concerning the path

of a phase point on an energy surface", hints at the origins in statistical mechan-

ics. Here T describes the time evolution (in one time unit) on the phase space

Q of a mechanical system, m is the T-invariant "microcanonical" probability

measure on a surface of constant energy, and one is interested in the question

of whether the "asymptotic time average" ( 1 ) of an "observable" /: Q —► R

exists and coincides with the "ensemble mean" / f dm . By the theorems, the

answer is affirmative when m and T are ergodic, in that each T-invariant

function is constant m-almost everywhere. This last condition is a modern

version of Boltzmann's famous ergodic hypothesis; its validity for systems of

physical interest is still a major open problem.

Perhaps even more important than this application to statistical mechanics

is the fact that the ergodic theorems above imply a general version of the law

of large numbers. Indeed, let Í2 = RN, T be the left-shift of coordinates,

and /:fl-tR be the projection onto the first coordinate, so that f oTk is

the projection onto the (k + l)th coordinate. The sequence (/o Tk)¡c>0 is

then the canonical model for a sequence (Z„)„>i of real random variables, and

the T-invariance of the associated probability measure m on Q just means

that (Z„)„>i is stationary, i.e., invariant (in distribution) under time shifts. It
thus follows from (1) that, for each stationary sequence (Z„)„>i of integrable

random variables, the limit
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exists with probability 1.



BOOK REVIEWS 127

In stochastic models of spatial phenomena one has to deal with families

(Zx)x€x of random variables indexed by the elements of a group X like iß or

Rd . Such a family is called a random field on X, and it is called homogeneous

if its distribution is invariant under translations of X. It is natural to ask for
extensions of the law of large numbers to homogeneous random fields. Thus,

one would like to replace the action of the semigroup (Tk)k>0 occurring in

BirkhofPs theorem by the (right) action of an arbitrary group or semigroup X

on (Q, !F, m), i.e., a family (Tx)xç.x of measurable m-preserving transfor-

mations of Q such that TXl o Tx¡ = TXlX2 for all x\, xi € X. Similarly, one

would like to consider (right) isometric representations of X in a Hilbert space
H, i.e., families (Ux)x€x of linear isometries of H satisfying UX2oUXi = UX¡X2

for all x\, X2 € X. This is the central theme of Tempelman's monograph. The

basic question may be stated as follows:
For which measurable groups or semigroups X with a translation invariant

measure p and for which nets (-d/J/g/ in X is it true that:

(a) for every action (Tx)x€x of I on a tr-finite measure space (Í2, &~, m)

and each f e Lp with p > 1, the limit

(3) limM^r1 / f(Txco)p(dx)

exists for w-almost every co e Q, and
(b) for every isometric representation (Ux)x€x of X in a Hilbert space H

and each h e H,

(4) \imp.(Ai)-1 [ Uxh p(dx)
'€/ Ja,

exists in the norm of H ?

A net (A¡)i€j in X satisfying (a) resp. (b) will be called pointwise resp. mean

averaging.

Birkhoff (1931) already considered the case X = R+ (with Lebesgue measure

p.) and proved that the standard net ([0, i])/eR+ is pointwise averaging. The

multiparameter case was treated by N. Wiener (1939) and N. Dunford (1939).

They showed that unboundedly increasing sequences of cubes or balls in X = Rd

or Zd are both pointwise and mean averaging. Considering this result, one may

restate the basic question above as follows:

(i) What are the essential geometric features of mean or pointwise averag-
ing nets of sets?

(ii) Which semigroups X admit a net or a sequence of sets exhibiting these

features?

One basic attribute of nets (Aj)ieI of cubes or balls in X = Rd with volume
p{A¡) —> oo is the so-called Folner property (with respect to Lebesgue measure

p) : For each x e X,

lim p(Aj A A¡x) I p{Ai) = 0.
iei

Here A¡x stands for the translation of A¡ by x , and A denotes the symmetric

difference of sets. A locally compact group X which admits a net of compact

Baire sets satisfying the Feiner property with respect to (right) Haar measure p
is called amenable. It can be shown that X is amenable whenever it is abelian
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or compact or admits a composition series consisting of abelian or compact
groups. On the other hand, a noncompact connected semisimple Lie group is

not amenable. For an amenable group X, the mean ergodic problem has a

simple solution: Each Folner net is mean averaging.

What can be said in the nonamenable case when no Folner net exists? Here

are some typical results from the book. First, there is a special class of locally

compact groups for which each net (A¡)i€¡ with 0 < p{A¡) < oo and p(A¡) —►

oo is mean averaging; this class includes, for example, all noncompact connected

almost simple Lie groups with finite center. For er-compact connected locally

compact groups X, one can take advantage of general structure theorems to

construct mean averaging sequences. If X is not er-compact and connected

but nondiscrete, it can be shown, at least, that mean averaging sequences exist.

As for the pointwise ergodic problem, it can be shown by examples that

a Folner net is not necessarily pointwise averaging. One needs an additional
property called regularity. Unlike the Folner property which is not affected by

translations of the sets A¡, the regularity condition imposes restrictions on their
relative positions and on isolated parts far from the bulk. Typical examples of

regular Folner nets in Rd are nets of bounded convex sets containing balls with

diameters tending to infinity and nets of sets obtained by iterated stretching

of a set of positive finite Lebesgue measure. A central result of the book im-

plies that every linearly ordered increasing regular Folner net in an amenable

group is pointwise averaging. It is interesting to note that the proof of this gen-

eral theorem still follows the general device developed by Wiener (1939). For

nonamenable but connected locally compact groups, it is possible to construct
sequences of sets which are both mean and pointwise averaging.

Besides these results which are obtained by general methods, Tempelman's

book also contains a discussion of more specific techniques which lead, for
example, to the following recent result of R. L. Jones (1991): For each action

(Tx)x€Rd of Rd, d > 3, on a er-finite measure space (Í2, 9~, m) and each

/ € L2 , the limit

lim     f{Txœ)an{dx)
n-,°° J

exists for m- a.e. œ and in L2-norm; here an is the normalized surface measure

on the sphere of radius n centered at the origin.

A further theme of Tempelman's book comes from the classical

Mean-value theorem [H. Bohr, 1925]. Suppose /: R —>• C is continuous and

almost periodic, in that its translates x -» f(x + y), y e R, form a relatively

compact subset of the space C(R, C) (with the uniform norm). Then the limit

1   rT
hm - /   f(x + y)dx

exists uniformly in y e R and does not depend on y.

From this result one is led to the following general question: For which

(measurable) semigroups X, which continuous functions / from X into a

Banach space B, and which nets (i>i),6/ of probability measures on X, does

the limit

(5) lim f f{yx)Vi{dx)
'6/ J
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of the Bochner integrals j f(yx)vj{dx) e B exist (in the 5-norm) uniformly

in y € X and does not depend on v? In fact, this question extends the mean

ergodic problem stated at (4). Indeed, the expression in (5) reduces to (4) if

we set B - H, u¡ = p{-r\A¡)/p(Ai), y the identity of X (provided it exists),

and f:x -* Uxh the orbital function of h e H under the isometries Ux,

x e X. Note that the set of all translates of such an / belongs to a norm-

ball in H which is well known to be weakly compact. In other words, the

orbital functions occurring in the mean ergodic theorem and the concept of
almost periodic functions admit a common generalization called weak almost

periodicity: A function /: X -> B is called weakly almost periodic if the set of

its translates is relatively compact in the weak topology.

The question around (5) is approached in two stages:
(i) Which continuous functions /: X —► B admit a sequence (i/,)f>i of

discrete probability measures on X satisfying (5)? This problem of "quasi-

averageability" amounts to the question of finding invariant elements in the

closed convex hull of all translates of / and can be solved by suitable fixed

point theorems. For example, the answer is positive when X is a group and /

is weakly almost periodic.
(ii) Which classes Q of continuous functions /: X -» B admit a net (i>f)/e/

which is universally averaging, in that the limit (5) exists for all / € Q? A

typical result here is the following: If X is a connected a-compact locally

compact group, there exists an increasing sequence (A¡)¡>i of compact sets in

X such that the measures v, — p(' n Ai)/p(A¡) (p being right Haar measure)
form a universally averaging sequence for the class of all weakly almost periodic

functions.
Some further topics discussed in Tempelman's book are: the ergodicity as

well as the weak and strong mixing property for general group actions, ergodic

theorems for homogeneous random fields on homogeneous spaces, ratio ergodic

theorems, and local and global ergodic theorems for homogeneous random mea-

sures on locally compact groups. The final chapter contains some applications to

information theory and statistical mechanics: ( 1 ) a Shannon-McMillan conver-

gence theorem for the specific entropy per site of a homogeneous random field

on a countable group—in fact, there are two distinct notions of specific entropy

which coincide in classical cases but not in general; and (2) a variational char-

acterization of homogeneous Gibbs random fields on countable groups in terms

of their specific free energy—such Gibbs random fields are the stochastic model
of a physical system of infinitely many interacting components in equilibrium.

The field of ergodic theorems for general group actions owes much to Tempel-

man's own contributions. His monograph (which is a largely extended version

of a book published in 1986 in Russian) provides a comprehensive and impres-

sive account of the subject. It also contains several new results and arguments.
Unavoidably, there is some overlap with the standard work of Krengel [1], but

the general scopes are different; roughly speaking, Krengel's book is focused

on more specific situations. Besides bibliographical notes as usual and a long
list of references, Tempelman's book contains an extensive appendix providing

background information on various related subjects—this little encyclopedia

is useful in its own right. On the negative side, besides misprints there are
also omissions of important specifying words (like "weakly"), even in defini-

tions, which require an alert reading. Also, a newcomer in the field may feel
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somewhat lost in technicalities because the author provides almost no guiding

comments on motivations and intuitions. This, however, does not affect the

eminent value of the book as an authoritative and complete reference work for

ergodic theorists and other users of abstract ergodic theorems.
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The theory of surfaces or Riemann surface theory, from its inception, has

often been driven by computational and/or combinatorial questions. The roots
of the theory lie in the study of algebraic integrals in the complex plane. Since

that time, a significant part of surface theory has been devoted to the pursuit

of combinatorial schemes to understand better some of the deeper structure,
be it topological, geometric, algebraic, or analytic. The early work of Fagnano
and later Euler, Abel, and Jacobi focused on the addition theorems for abelian
integrals (see, e.g., Siegel [12]). In a different linguistic setting, we find this

stream of ideas a still active part—and a spiritual foundation—of modern alge-
braic geometry. It is implicit in the constructions of Riemann, made concrete

by Hurwitz, that a Riemann surface as a topological object may be defined by

combinatorial data describing how to glue polygons together.
The complex analytic as well as the algebraic geometric approach to Riemann

surface theory over most of the past one hundred years has been quite a bit less

explicit. Emphasis was placed on broad general properties while interest in

explicit algorithms lagged. Those of us in the complex analytic and topological
wings of the Riemann surface community (as contrasted with those who study

the same object under other names and guises) were treated to two jolts in the

past two decades. The first came from Bill Thurston in the mid-1970s and

underlies much of the substance of this review, while the second started about
1980 and came from particle physicists. The physicists actually wanted to do

numerical computations, such as integration, in spaces of Riemann surfaces—a
task for which we were quite unprepared.

The natural equivalence relation among Riemann surfaces is that of confor-

mai or holomorphic equivalence. Not all topologically equivalent surfaces are

conformally equivalent. The space of conformai equivalence classes of Rie-

mann surfaces of a fixed finite topological type1 is called the moduli space Jf

1 Here I am being sloppy by not distinguishing between punctures and bigger holes.


