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somewhat lost in technicalities because the author provides almost no guiding

comments on motivations and intuitions. This, however, does not affect the

eminent value of the book as an authoritative and complete reference work for

ergodic theorists and other users of abstract ergodic theorems.
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The theory of surfaces or Riemann surface theory, from its inception, has

often been driven by computational and/or combinatorial questions. The roots
of the theory lie in the study of algebraic integrals in the complex plane. Since

that time, a significant part of surface theory has been devoted to the pursuit

of combinatorial schemes to understand better some of the deeper structure,
be it topological, geometric, algebraic, or analytic. The early work of Fagnano
and later Euler, Abel, and Jacobi focused on the addition theorems for abelian
integrals (see, e.g., Siegel [12]). In a different linguistic setting, we find this

stream of ideas a still active part—and a spiritual foundation—of modern alge-
braic geometry. It is implicit in the constructions of Riemann, made concrete

by Hurwitz, that a Riemann surface as a topological object may be defined by

combinatorial data describing how to glue polygons together.
The complex analytic as well as the algebraic geometric approach to Riemann

surface theory over most of the past one hundred years has been quite a bit less

explicit. Emphasis was placed on broad general properties while interest in

explicit algorithms lagged. Those of us in the complex analytic and topological
wings of the Riemann surface community (as contrasted with those who study

the same object under other names and guises) were treated to two jolts in the

past two decades. The first came from Bill Thurston in the mid-1970s and

underlies much of the substance of this review, while the second started about
1980 and came from particle physicists. The physicists actually wanted to do

numerical computations, such as integration, in spaces of Riemann surfaces—a
task for which we were quite unprepared.

The natural equivalence relation among Riemann surfaces is that of confor-

mai or holomorphic equivalence. Not all topologically equivalent surfaces are

conformally equivalent. The space of conformai equivalence classes of Rie-

mann surfaces of a fixed finite topological type1 is called the moduli space Jf

1 Here I am being sloppy by not distinguishing between punctures and bigger holes.



BOOK REVIEWS 131

and was first considered by Riemann, although its analytic structure was not

given until about 1960 by Ahlfors and Bers (see, e.g., Nag [10]).
Isolated combinatorial approaches and methods for the study of Riemann

surfaces had appeared intermittently over a period of about one hundred years.

In the last two decades, Thurston created machines whose use enabled us to

study the structure of surfaces in an organized fashion. The early Thurston

methodology, in Bill Harvey's phrasing, consisted of taking a combinatorial

situation, throwing it into a huge projective space to complete it, and then

pulling back via nice finite sets of coordinates to a combinatorial situation.

This concept is marvelous; it has spiritual roots in such topological constructs as

classifying spaces. Thurston used the technique methodically and with awesome

success. A major part of his success can be attributed to his ability to associate

geometric objects to the ideal points added by the process of compactification.
I will trace some of the historical development of the ideas underlying the

theory and applications of train tracks before discussing the modern treatments,

of which the book under review is the most complete.

We will start in 1882, when Klein, in the process of "proving" the uniformiza-

tion theorem, was starting to give coordinates to spaces of Riemann surfaces.

His biggest difficulty and the only serious gap in his argument arose from the

problem of deciding on an adequate description of a Riemann surface. By tradi-
tion he had to think of them as plane algebraic curves, but, actually, the objects

he considered were finite volume hyperbolic surfaces or orbifolds. To avoid

unnecessary complications, we will restrict our attention here, unless otherwise

stated, to compact surfaces. He looked at a Riemann surface as a deformation

of a discrete cocompact hyperbolic group. The space of such deformations is
one of the many forms in which appears the Teichmüller space Tg of surfaces

of genus g. Klein did not give a parametrization of the space. He simply

thought of it as a collection of hyperbolic polygons with identifications or as

the groups generated by the transformations which perform the identifications.

Later Fricke (see Keen [7]) looked at some parameters, based on geometric
dissections of surfaces to obtain global coordinates for the Teichmüller space.

Unfortunately, the Teichmüller space is not the same as the moduli space of

Riemann which we have previously mentioned. The moduli space may be ob-

tained as a quotient of Tg by the mapping class group in genus g (see below).

The projection is a branched covering.
We will need to consider a variant of Fricke's work. Suppose we are given

a compact hyperbolic surface, that is, a compact surface S of genus g > 1

and a Riemannian metric of curvature -1 on S. S may be realized as the

quotient, of the upper half plane model of the hyperbolic plane, by a group

G of real möbius transformations. The group G is uniquely determined up to

conjugation in the group of real möbius transformations. Suppose a is a simple

closed homotopically nontrivial curve on S. Then in the free homotopy class

of a there is a unique curve of minimal length which is again simple. So we

might as well assume that a is this simple closed geodesic. If y g G is a deck

transformation covering the closed geodesic a, then the length / of a in the

hyperbolic structure on S is related to the trace t of y by t = ±2cosh(//2).

It is a standard computation (see, e.g., Abikoff [1] among many others) that
the lengths of sufficiently many simple closed curves completely determines the

hyperbolic structure of S and, hence, also its conformai equivalence class.
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Much later, Fenchel and Nielsen described the Teichmüller space using some

lengths and angles (again, this may be found in many places; I know Abikoff
[1] best). They parametrized the same space by gluing together triply connected
domains or, in modern jargon, pants. (A pants is a closed disk from which we

have removed the interiors of two disjoint closed subdisks.)

The use of pants in the study of surfaces had already been introduced by

Dehn [3]. Dehn was one of the first mathematicians to introduce algebraic and

combinatorial methods into topology. Among many other things, Dehn was
interested in how an autohomeomorphism h acts on a surface S. Clearly, h

permutes the (simple) closed curves on S. It also respects homotopy of curves,

so, up to an indeterminacy caused by h not fixing the base point, h induces an

automorphism n\h of ii\S. Any indeterminacy disappears when we consider
the coset H, containing h , of the inner automorphisms of nlS in the group

of automorphisms of niS. H is called the mapping class of h. It is well

known—and apparently due to Dehn—that every outer automorphism of niS

modulo inner ones is induced by a homeomorphism of S. A particularly nice

set of generators of the mapping class group is given by the Dehn twists. Each

of these homeomorphisms, later rediscovered by Lickorish, is the identity off a
neighborhood of a simple closed curve. Unfortunately, the action of a general

mapping class on either niS or Tg is rather difficult to see in terms of the
Dehn twists, and this action is not given in terms of any natural coordinates.

But Dehn did not stop there. He came up with another brilliant idea. He used

a pants decomposition of S to give a combinatorial description of a simple
closed curve a. This requires not only the choice of a pants decomposition

but of a distinguished curve on each pants. One then counts how many times

a intersects the distinguished curves and the border curves of the pants. From

these counts one can recover the curve uniquely up to free homotopy. If you
know a curve, you know its length in some hyperbolic metric. If you know

the lengths of enough curves, you know the surface. Unfortunately, the map,

associating to a closed curve the length of the geodesic in its free homotopy
class, is not invertible; i.e., one cannot recover the homotopy class of curves

from the unordered sequence of lengths of closed geodesies. In particular, we

cannot determine mapping classes from lengths of curves. Both train tracks

and the apparently more efficient methods of Mosher [9] can be used to give
combinatorial descriptions of mapping classes.2

Dehn's description was rediscovered by Thurston in the mid-1970s. He made

it into a theory by taking the numbers that are associated to a curve and us-

ing them as coordinates for a space of finite systems of simple closed curves.

He was even able to compactify the space by adding ideal points which corre-

spond to equivalence classes of (slightly singular) measured foliations (details

can be found in [4]). I had two main difficulties in understanding Thurston's

ideas. The first was how to recover a curve from the coordinates—that is
not really difficult, at least visually. The main problem is how one changes

coordinates—each choice of coordinates depends on a choice of pants decom-
position and distinguished curve. In other words, the coordinate transition func-

tions are complicated by the topological choices that one must make. The next

2I am unaware of any direct comparisons between the two methods; however, Mosher's technique

uses the available data more efficiently.
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observation was that this is a topological construct—it does not use any hyper-

bolic geometry. Perhaps if we used a little geometry, the uniqueness of geodesies
would start to ease the problems caused by too many topological choices.

The process of introducing geometry into the description of the simple closed
curves has several consequences. After the introduction of geometry, the mea-

sured foliations were replaced as objects of study by measured geodesic lamina-

tions. These are completely unique once a hyperbolic structure is fixed on the

surface but are really independent of any choice of hyperbolic structure. One
can move back and forth between the descriptions afforded by foliations and

laminations (see, e.g., Levitt [8]).
Since train tracks, which ultimately are the subject of this review, are used

to give local coordinates to the spaces of measured geodesic laminations with

compact support, we need to define the latter concept. A measured geodesic

lamination with compact support on a finite volume hyperbolic surface S is a

pair (J?, p) where J? is a compact set given as the union of a collection of

disjoint simple (closed or open) geodesies on S and p is a measure on the

family of smooth curves transverse to S?. Sf has a local product structure,

and p is required to respect this structure. In the following we assume all

our laminations have compact support since our surfaces are assumed to be

compact.
In the generic (uniquely ergodic) situation, Sf determines p up to a scalar

multiple, and it is common to refer to Jz? as a measured geodesic lamination. If

Sf consists of a finite number of simple closed geodesies, then p can just count

the number of intersections of Sf with a curve meeting it transversely. The

topology on the measured laminations is chosen so that these counting measures
are dense even when Sf consists of a single simple closed geodesic.

An alternate description of a neighborhood of a measured lamination {Sf, p)
consists of the measured laminations (¿2", p') for which 3" is near 5? and

p' is a measure or weight, in a sense we give below, which approximates p .

A better description of the topology on the space of measured laminations is
afforded by the use of train tracks.

We first give an intuitive notion of train tracks since the formal definitions

of geometric objects often obscure the rather simple pictures which they codify.
To get to the punchlines quickly, I will merge the topological and metrical parts
of the definition of (weighted or measured) train tracks. To obtain topological

tracks, simply remove all reference to weights.

Think of a train track t as a special type of graph embedded in a surface.

The edges, here called branches, are assigned nonnegative weights. A vertex,

called a switch, forces a partition on its incident branches into two classes, call
them / and O. The sum of the weights on the / branches must equal that
on the O branches. A closed curve in the train track, which passes through

a switch, must go from an / branch to an O branch or vice versa. (This is
usually stated through a requirement that the branches all be tangent at a switch

and the further condition that all curves in the track be smoothly parametrized.
There is no real need to look at differentiable notions.) There are two other

technical conditions. One is that every simple closed curve in t contain exactly
one bivalent switch. The other is a nontriviality condition on the embedding
of the track. Namely, if.R is a component of S\t, we may double R along

r\{switches} to obtain a punctured surface. This doubled surface is required to
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have negative Euler characteristic. It is fairly standard, but technical, to assume

that all switches are trivalent unless they lie on a component of the track which

is a simple closed curve.
A train track may be obtained from a family of disjoint, homotopically in-

equivalent, simple closed curves a on S by merging parallel subarcs of the

curves. The isotopy class of such a family is called a multicurve. The weights

then count the number of subarcs that have been merged to form a single branch.

The switch condition means that whatever goes into a switch also must emerge

from it. A branch b is called recurrent if there is some simple closed curve in

the track which traverses b . A track is called recurrent if all of its branches are.

The nonrecurrent branches simply cannot carry a simple closed curve, and

we will assume that such branches are not present in the tracks considered

here. We may reverse the above procedure and put integral weights on the

track. Then we may find a simple closed curve a on S which smashes into

a multicurve in the track with the prescribed weights counting the number of

times the multicurve traverses the branches. The rational-valued measures are

just ratios of the number of traversings. Clear the denominators to get back the

weights associated to a simple closed curve. Irrational weights are associated to

limits of finite systems of disjoint simple closed curves; these are the measured
geodesic laminations. Here we increase the denominators so that limits exist—

more technically, we have thrown the whole numeric description into projective

space.

We can use the train track to give a natural topology—in fact, a natural PL

structure—to the space of systems of disjoint simple closed curves and measured

geodesic laminations on a surface. A neighborhood consists of a bunch of
intervals of nonnegative numbers assigned to the branches of a track. Those

numbers define a range of weights for the branches. The next thing we can

do with this structure is to look at transverse recurrence, namely, to use those

weights to describe how a curve meets (transversally crosses) the track. In this

way we can recover Dehn's Theorem.

I believe that train tracks and measured laminations will be enduring tools in

the study of the surfaces and higher-dimensional manifolds. Thurston's com-

pactification of the Teichmüller space Tg by measured laminations offers us

a sphere at infinity to which the action of the mapping class group extends

naturally and continuously. Much of our knowledge of the moduli space is con-

jectured by analogy with hyperbolic manifolds and proved by vastly different

techniques. The hyperbolic case is often studied by lifting the given problem

to the universal cover and studying the action of the cover group on the sphere

at infinity (formerly called the absolute). In principle this method is now avail-

able for the moduli space using laminations. In dimension three the natural

generalizations of tracks and laminations provide a description of the branched

surfaces which carry incompressible surfaces (see Floyd and Oertel [5]). This

provides a natural setting for the study of the object fundamental to Haken
theory.

The subject matter of tracks, when suitably pruned and carefully presented,

should be accessible to undergraduates. One might have to leave out some of

the heavier combinatorial arguments and rely on intuition for some obvious but
difficult topological results (see below).

There have been several places where measured geodesic laminations and



BOOK REVIEWS 135

their parametrizations using measured train tracks have been examined. The

first was Thurston's semipublished manuscript [13] in which he introduced the
basic ideas and interrelationships. Later, Hatcher [6] and Bleiler and Casson

[2] gave nice descriptions. Penner's short introduction [11] is quite accessible.

The book by Penner with Harer, which is under review here, has been circu-

lated in draft for several years. It is the only complete treatment of the basic

objects. Much of the material is a delayed writeup and expansion of Penner's
dissertation. John Harer coauthored some parts of the book.

Penner's book is devoted to the static theory of tracks and their relationship
to measured geodesic laminations. By static he means that the action of the

mapping class groups on tracks and laminations is only outlined. Applications

are left to an appendix, an epilogue, and other writings. As is typical of the

monographs in the Annals of Mathematics Studies series, it is written at a level

that is appropriate for an advanced graduate student or researchers. The difficult
arguments are given in detail. The book has the main results in the static theory

and will be the standard reference in the subject. It does clearly demonstrate

that fairly intuitive ideas often require really tough proofs. It is possible to get

an overview of the subject from a more casual reading—a quality I view as

extremely desirable in any book. The book could use an index, but this flaw is

noticable in many volumes in the Annals of Mathematics Studies.

The main emphasis in the book is on a pair of admissible moves called

splitting and shifting for changing isotopy classes of tracks. The tracks that can
be moved one into another form an equivalence class. In each such class there is

a unique standard track. This relation was chosen so that equivalent tracks will

carry the same laminations. It is then easy to give the piecewise linear structure

of the space of measured geodesic laminations with compact support and, more
generally, to define a natural symplectic structure on that space.

The book has an epilogue which surveys the relationship to Riemann surface

theory and the action of the mapping class group. An addendum gives the main

result in Penner's thesis which is a collection of explicit formulas for the action

of the mapping class group in the Dehn-Thurston coordinates.

References

1. W. Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Math. 820 (1980),
Springer-Verlag, New York.

2. A. J. Casson and S. T. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London

Math. Soc. Student Texts, vol. 9, Cambridge Univ. Press, Cambridge, 1988.

3. M. Dehn, Papers on group theory and topology, Springer-Verlag, New York, 1987.

4. A. Fathi, F. Laudenback, and V. Poenaru, Travaux de Thurston sur les surfaces, Astérisque

66-67 (1979).

5. W. Floyd and U. Oertel, Incompressible surfaces via branched surfaces, Topology 23 (1984),

117-125.

6. A. Hatcher, Measured lamination spaces for surfaces, from the topological viewpoint, Topol-
ogy Appl. 30 (1988), 63-88.

7. L. Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math (2) 84 (1966), 404-420.

8. G. Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), 119-135.

9. L. Mosher, The classification of pseudo-anosovs, Low Dimension Topology and Kleinian

Groups, London Math. Soc. Lecture Notes, vol. 112, Cambridge Univ. Press, Cambridge,
1986, pp. 13-75.



136 BOOK REVIEWS

10. S. Nag, The complex analytic theory of Teichmüller spaces, Wiley-Interscience, New York,

1988.

U.R. Penner, An introduction to train tracks, Low Dimensional Topology and Kleinian Groups,

London Math. Soc. Lecture Notes, vol. 112, Cambridge Univ. Press, Cambridge, 1986,

pp. 77-90.

12. C. L. Siegel, Topics in complex function theory, vol. 1, Wiley-Interscience, New York, 1969.

13. W. Thurston, The geometry and topology of 3-manifolds, Princeton Univ. Math. Dept., 1979.

W. Abikoff

University of Connecticut

E-mail address : abikoff@math.uconn.edu

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 29, Number I, July 1993
©1993 American Mathematical Society
0273-0979/93 $1.00+ $.25 per page

The general theory of integration, by Ralph Henstock. Oxford Mathematical

Monographs, Clarendon Press, Oxford, 1991, xi+262pp., $75.00. ISBN 0-
19-853566-X

In elementary calculus courses we are usually successful in teaching students

to evaluate an integral of a suitable function f — F' on an interval [a, b],

by evaluating F(b) - F (a), but we are often not very successful in connecting

this type of integration with Riemann sums and their limits. During their ju-

nior/senior year, students who are studying mathematics seriously are then led
through a more careful and exhaustive discussion of these ideas. However, they

are informed that all of this is only tentative, since when they become graduate

students they will replace the outmoded Riemann integral that they have just

mastered with the Lebesgue integral. Of course, it is not completely replaced

by this new integral, because there are certain notions, such as "improper in-

tegrals", that do not fall under this new umbrella and are still of considerable

importance; moreover, almost all evaluations of integrals (whether Riemann or

Lebesgue) are found by using the F(b) - F (a) method, with a few minor vari-

ations. We tell our advanced undergraduates that we would like to introduce

them to the Lebesgue integral but cannot do so since it requires a prior study of

measure theory and/or topology and is "too advanced" for them at their present

stage of mathematical study. Probably none of us is satisfied by this circuitous

procedure.

Suppose that someone came up with an approach to the integral that simul-

taneously covered the integration of all functions that have antiderivatives, all

functions that have Riemann integrals, all functions that have improper inte-

grals, and all functions that have Lebesgue integrals. Moreover, suppose that

the definition of this "superintegral" was only slightly more complicated than
that of the Riemann integral, that its development required no study of measure

theory, no study of topology, and that this integral had properties that corre-

spond to the Monotone Convergence Theorem and the Lebesgue Dominated

Convergence Theorem (among others).


