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In elementary calculus courses we are usually successful in teaching students

to evaluate an integral of a suitable function f — F' on an interval [a, b],

by evaluating F(b) - F (a), but we are often not very successful in connecting

this type of integration with Riemann sums and their limits. During their ju-

nior/senior year, students who are studying mathematics seriously are then led
through a more careful and exhaustive discussion of these ideas. However, they

are informed that all of this is only tentative, since when they become graduate

students they will replace the outmoded Riemann integral that they have just

mastered with the Lebesgue integral. Of course, it is not completely replaced

by this new integral, because there are certain notions, such as "improper in-

tegrals", that do not fall under this new umbrella and are still of considerable

importance; moreover, almost all evaluations of integrals (whether Riemann or

Lebesgue) are found by using the F(b) - F (a) method, with a few minor vari-

ations. We tell our advanced undergraduates that we would like to introduce

them to the Lebesgue integral but cannot do so since it requires a prior study of

measure theory and/or topology and is "too advanced" for them at their present

stage of mathematical study. Probably none of us is satisfied by this circuitous

procedure.

Suppose that someone came up with an approach to the integral that simul-

taneously covered the integration of all functions that have antiderivatives, all

functions that have Riemann integrals, all functions that have improper inte-

grals, and all functions that have Lebesgue integrals. Moreover, suppose that

the definition of this "superintegral" was only slightly more complicated than
that of the Riemann integral, that its development required no study of measure

theory, no study of topology, and that this integral had properties that corre-

spond to the Monotone Convergence Theorem and the Lebesgue Dominated

Convergence Theorem (among others).
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If this mathematical miracle occurred, then wouldn't this new approach be

immediately adopted, at least at the junior/senior level course, and quickly
worked into the calculus level? The answer is a resounding: No!

Proof. In fact, such an integral has already been developed and has been around

for some time, but its existence has remained largely unknown (except to readers

of the Real Analysis Exchange) and it has had very little, if any, educational

impact (known to this reviewer).

The reader of this review may well be dubious of the above remarks. If,

in fact, the definition of this superintegral is so simple, then what is it? Here
goes, but first a couple of definitions will be convenient. (We will confine our

attention to a compact interval [a, b] for simplicity.) A tagged division of
[a, b] is a division (- partition) of [a, b] given by a finite ordered set a =

xq < X\ < ■■ ■ < xn — b of points, together with a collection of tags z, such that

Xi-i < Zi < x, for i » 1, ... , n. We denote a tagged division by D(x¡, z¡)

and the corresponding Riemann sum by

n

S(£>(x,-,z,)):=£/(z,)(*,-x,-i).
;=1

A gauge on [a, b] is a function S defined on [a, b] such that S(x) > 0 for

all x e [a, b]. An important example of a gauge is a constant function. If ô is

any gauge on [a, b], we say that a tagged division D(x¡, z¡) is ô-fine in case

that [x,_i, x¡] ç [z, - S(zi), Zi + S(zj)] ; that is, in case z, - S(z¡) < x¿-i <

2i < x¡ < z¡ + o(z¡) for all i = 1, 2,...,« . Finally, we say that the number A

is an HK-integral of / if, for every e > 0, there exists a gauge <5£ such that

if D(Xi, Zi) is any tagged division of [a, b] that is <5£-fine, then we have

\S(D(Xi,Zi))-A\<e.

It is easy to show that the i/AMntegral of a function is uniquely defined when

it exists and that a function is Riemann integrable if and only if the gauge ôc

can be chosen to be constant.

At first glance the above seems to be nothing particularly new. To see that

the //.K-integral "catches new fish", consider the Dirichlet function g(x) :-
0 when x is irrational and g(x) := 1 when x is rational on [0,1]. Let
(f\, fi, ■■■) be an enumeration of the rational numbers in [0,1], and, for

e > 0, define the gauge Se by ôe(z) := 1 if z is irrational and oe(r¡) :=

e/2'+1, i — \ ,2, ... . Thus, for any tagged <5£-fine division, the subintervals

with rational tags have total length less than e, and those with irrational tags

contribute 0 to the Riemann sum. Thus the .f/AMntegral of the function g is
0. This same argument can be used to show that the characteristic function of
any Lebesgue null set is //AT-integrable with integral 0. In fact, it can be shown

that every Lebesgue integrable function is //ÄT-integrable with the same value.

However, the //AT-integral also integrates certain functions that are not

Lebesgue integrable. Indeed, the derivative of the function F(x) := x2(sinx~2)

for x € (0, 1] and .F(O) := 0 is neither Riemann nor Lebesgue integrable, but

it is i/tf-integrable with integral F (I) - F{0).

Further, let / be defined on [0, 1] by /(0) := 0 and f(x) := x~1'2 for
x G (0, 1 ]. Then, it is a somewhat tricky exercise to show that, if 0 < e < 1
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and if the gauge Se is defined by 4(0) :- e2/16 and Sc(z) :- ez3/2/4 for
z e (0, 1], then / is //X-integrable with integral F (I) -F(0) = 2. (Note that
this coincides with the value of the improper integral of x~ll2 over the interval

(0,1]. It is also interesting to notice that the gauge 5e forces the tag of the

first subinterval in any <5£-fine division to be the point 0, where /(0) = 0.) In a

similar way one can show that the function h(x) := x_1 sinx is i/AMntegrable

on [1, oo). Thus, the //ÀT-integral is not an "absolute integral", in the sense

that the absolute value of an integrable function is not necessarily integrable.

Moreover, a function / is Lebesgue integrable if and only if both it and its

absolute value are //ÜT-integrable.

The integral defined above is called the 7/ÄMntegral (in this review), since

it was developed in the late 1950s by Henstock [2] and Kurzweil [6]. It has

also been called the "generalized Riemann integral" or the "gauge integral"; we

propose that it be renamed simply "the integral". By now the reader may be so

curious to learn about this integral that he/she may be ready to order a copy of
the book under review and get to work. However, the reviewer would advise

that the interested reader build up strength before doing so. Indeed, Henstock

[5] published an earlier book intended as an introduction to this theory which

the reader may find useful, and Kurzweil [7] published a monograph giving

an exposition of this integration theory on R" , with all of its notational com-

plications. McLeod [9] and Lee [8] present expositions that are approachable,

although the first uses an idiosyncratic notation that did not help the reviewer,

and the latter has certain gaps and obscurities this reviewer found annoying.

By far the most readable account of the elementary aspects of this theory was

presented by DePree and Swartz [1], which is highly recommended as an intro-

duction to the theory. (McShare [10] made a modification of the definition that

gives precisely the Lebesgue integral.)

What, then, is the content of the book under review? It consists of an ex-

tremely general and abstract treatment of the author's ideas. His strategy has

apparently been to provide a formulation that is so general that almost ev-

ery known "integration theory" is included as a special case. As a result, it is

not always easy to identify some of the results as having any connection with

any integration theory. Among the topics treated are the underlying notions of

"division systems" and "division spaces", limit theorems, connections with dif-

ferentiation theory, finite Cartesian products of division spaces, integration in

infinite-dimensional spaces (which makes contacts with the Wiener and Feyn-

man integrals), and a very general formulation of Riesz representation-type

theorems. Perhaps the most readable section in the book deals with a "short

history of integration", which is documented by forty-eight pages of references
to the literature.

In conclusion, the book is an impressive monument to a lifetime of research
in integration theory. However, in all honesty the reviewer cannot conceal his

sorrow that the writing is so abstract and so general as to be virtually impene-
trable by a typical reader. To quote the author in his assessment [5, p. 67] of the

work of Denjoy, "The theory is extremely complicated, and only a dedicated

student could hope to understand all its details." This reviewer hopes that there

may be dedicated students who will have a go at the present book; their labor
will not be easy, but it may be very fruitful.
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In recent years the field of differential equations has come to distinguish

between two different types of problems: the direct and the inverse. Broadly

speaking, in the direct problems a differential equation is given and a particular

solution is sought from among a given class of functions; in the inverse prob-

lems, a solution is given and a particular differential equation is sought from

among a given class of equations. This distinction is driven by the widespread

use of differential equations in the world about us. If we know exactly the

physical laws and the experimental setup of a particular experiment, then we
can predict the outcome by resolving a direct problem. Comparison with the

empirical outcome will confirm the theory or suggest a revision. But if we do

not know exactly the physical laws or the experimental setup, then perhaps we

can recover the missing details by carefully measuring the outcome and resolv-
ing an inverse problem. Direct problems have been with us since Newton, but

inverse problems are newer; they have come to fruition only since the Second

World War, in fields as diverse as quantum mechanics, radar, tomography, and
geological surveying.


