
BOOK REVIEWS 139

References

1. John DePree and Charles Swartz, Introduction to real analysis, Wiley, New York, 1988.

2. Ralph Henstock, The efficiency of convergence factors for functions of a continuous real vari-

able, J. London Math. Soc (2) 30 (1955), 273-286.

3._, Definitions of Riemann type of the variational integrals, Proc. London Math. Soc.

(3) 11 (1961), 402-418.

4._, Theory of integration, Butterworths, London, 1963.

5._, Lectures on the theory of integration, World Scientific Publishing Co., Singapore,

1988.

6. Jaroslav Kurzweil, Generalized ordinary differential equations and continuous dependence on

a parameter, Czechoslovak Math. J. 7 (1957), 418-446.

7._, Nichtabsolut konvergente Integrale, Teubner-Texte, vol. 26, Teubner, Leipzig, 1980.

8. Peng-Yee Lee, Lanzhou lectures on Henstock integration, World Scientific Publishing Co.,

Singapore, 1989.

9. Robert M. McLeod, The generalized Riemann integral, Cams Math. Monographs, vol. 20,

Math. Assoc. America, Washington, DC, 1980.

10. E. J. McShane, A unified theory of integration, Amer. Math. Monthly 80 (1973), 349-359.

11._, Unified integration, Academic Press, New York, 1983.

Robert G. Bartle
Eastern Michigan University

E-mail address: MTHJARTLE@EMUNIX.EMICH.EDU

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 29, Number I, July 1993
©1993 American Mathematical Society
0273-0979/93 $1.00 + $.25 per page

Multidimensional inverse scattering problems, Alexander G Ramm. Pitman

Monographs and Surveys in Pure and Applied Mathematics, vol. 51, Long-

man Scientific & Technical, Harlow, 1992, 379 pages, $170.00. ISBN 0-582-
05665-9

In recent years the field of differential equations has come to distinguish

between two different types of problems: the direct and the inverse. Broadly

speaking, in the direct problems a differential equation is given and a particular

solution is sought from among a given class of functions; in the inverse prob-

lems, a solution is given and a particular differential equation is sought from

among a given class of equations. This distinction is driven by the widespread

use of differential equations in the world about us. If we know exactly the

physical laws and the experimental setup of a particular experiment, then we
can predict the outcome by resolving a direct problem. Comparison with the

empirical outcome will confirm the theory or suggest a revision. But if we do

not know exactly the physical laws or the experimental setup, then perhaps we

can recover the missing details by carefully measuring the outcome and resolv-
ing an inverse problem. Direct problems have been with us since Newton, but

inverse problems are newer; they have come to fruition only since the Second

World War, in fields as diverse as quantum mechanics, radar, tomography, and
geological surveying.
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The first postwar discussion of a recognizable inverse problem, in 1946, is

due to Borg [1], who was concerned with the problem of recovering the den-
sity function for a one-dimensional vibrating string from a knowledge of its

eigenfrequencies and eigenweights. Shortly thereafter there arose a consider-

able interest in determining the shape of certain nuclear potentials in quantum

mechanics from measurements obtained from the scattering of elementary par-

ticle wave functions by these potentials. In 1949 Levinson [2] showed that the

potential function which scatters a one-dimensional particle is uniquely deter-

mined by the asymptotic phase of the particle wave function. In 1952 Jost and

Kohn [3] gave a simple algorithm for constructing the potential function from
the asymptotic phase. Meanwhile, in 1951 Gelfand and Levitan [4] produced

a general method for recovering the potential function in the one-dimensional
Schrödinger equation from the spectral data, and Marchenko [5] extended the
method to include recovering the potential directly from the scattering data. All
these attempts took on a renewed interest in the 1960s, when it was discovered

by Gardner, Greene, Kruskal, and Miura [6] that the direct problem for the

nonlinear Korteweg-deVries equation could be completely resolved by first re-
solving an associated inverse problem for the linear Schrödinger equation. The

inverse problem for the Schrödinger equation then took on all the aspects of a

thriving cottage industry.
The extension of these results to the more realistic and more interesting cases

in higher dimensions has not come easily. The difficulties are all present in

the prototype problem of the scattering in three dimensions of an elementary

particle by a scalar potential. Mathematically, the problem can be briefly stated

this way: Consider the time-independent Schrödinger equation

Aw(x) + k2u(x) - q(\)u(\) = 0,        x e R3.

This equation governs the scattering in three dimensions of the quantum me-
chanical wave function u(\) by the potential q(x). The relevant solution u(x)

satisfies the associated integral equation

u(x, k) = exp(/x.k) - jf3 eXPff^yl)g(y)"(y. k) dy.

As |x| —► oo, this solution has the asymptotic form

u(x,k) = e*-*-T(k',k)^-r+o(l/r).

This form may be interpreted physically as consisting of an ingoing plane wave

plus an outgoing spherical wave weighted by the 'T-matrix"

T(k', k) ̂ -Lj^'-^iyMy, k)dy,

which embodies the measurable scattering information. Here k is the ingoing

plane wave vector and k' is the outgoing scattered wave vector, with r = |x|

and k = |k| = |k'|. Writing 6 = k/|k|, 6' = k'/|k'|, and

A{6',6,k) = T{k',k),

we can state the relevant three-dimensional scattering problems as follows:

The direct potential scattering problem: Given q(x), find A(8', 6, k).
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The inverse potential scattering problem: Given A{8', 8, k), find q(x).

The inverse potential scattering problem breaks naturally into several pieces:

The uniqueness problem: Given A(8', 8, k), show that at most one potential

q(x) can give rise to A(6', 8, k).

The characterization problem: Given A(6', 8, k), find conditions which guar-

antee that at least one potential q(x) can give rise to A(8', 8, k).

The existence problem: Given A(9', 6, k), show that at least one potential can

give rise to A(8', 8, k).

The stability problem: Show that small changes in the data A(8', 8, k) result

in small changes in the potential q(x).

The reconstruction problem: Given A{8', 8, k), construct, analytically or nu-

merically, at least one potential giving rise to A(8', 8, k).

The partial data problem:  Given some portion of A(8', 8, k), construct at

least one potential q(x) giving rise to that portion of A(8', 8, k).

None of these problems is easy, and most are still open. The methods of

Gelfand-Levitan and Marchenko do not lend themselves to an immediate tran-

scription to three dimensions, and new considerations of a geometrical nature

appear. For example, the three-dimensional inverse potential scattering prob-

lem is overdetermined, in that a five-parameter family of scattering data is

being used to determine a three-parameter potential. This suggests that the

five-parameter family of scattering data is subject to a two-parameter family

relations. Numerous authors, including among many others Kay and Moses

[7], Faddeev [8], and Newton [9], have tried to extend the remarkable results

of Gelfand-Levitan and Marchenko to three-dimensional problems, with only

partial success. The last word on the inverse potential scattering problem for

the Schrödinger equation has not yet been heard.

Meanwhile, a similar circle of ideas arose in the fields of acoustic and elec-

tromagnetic radiation—first perhaps in military radar and sonar studies, where

the game is to guess the shape of an unknown scattering object from an analysis

of the scattering data. In 1959 Keller [10] showed that the radar backscattering
data from a smooth convex scattering object determine its Gaussian curvature

at the specular point. Nirenberg had already proved [11] that the Gaussian cur-

vature of the surface of a smooth convex object as a function of the normal

vector in turn determines uniquely the shape of the object (Minkowski's prob-

lem). In 1969 Lewis [12] showed that the backscattering data also determine the
cross-sectional areas of the object, and Radon [13] had already proved that these

cross-sectional areas also determine uniquely its shape (Radon's problem). Sev-
eral authors have studied the related problem of using acoustic scattering data

to determine the shape of a scattering inhomogeneity in the index of refraction
of an otherwise homogeneous acoustic medium. In one dimension this problem

can be brought to the form of a potential scattering problem by means of a suit-

able Liouville transformation and then resolved by the methods of Gelfand and

Levitan. In three dimensions this inverse refraction scattering problem exhibits

all the same difficulties as does the inverse potential scattering problem, but it

also involves the additional problems raised by the existence of caustics.
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The methods used here have also found application in such fields as geo-

logical surveys and medical and industrial diagnostics. The use of ultrasound
transponders is in principle very similar to that of radar and sonar transponders,

and the use of CAT and PET scanning devices lead directly to the inverse prob-

lem of determining the shape of a three-dimensional inhomogeneous medium

from a partial knowledge of the forward scattering data. A nice review of these

developments is found in Smith et al. [14]. In particular, they lead again to

Radon's problem and to the use of the Radon transform. We can say with

some assurance that the study of inverse problems will find increasing numbers

of applications in our increasingly technological society and will be with us for

some time to come.
I have taken some trouble to sketch these highlights of the rather diffuse

history of inverse problems for differential equations only because the book

under review here ignores them almost completely. In particular, not one of

the fundamental papers listed below is cited in the bibliography. (I find it hard

to imagine writing a book on inverse scattering without mentioning at least the

papers of Gelfand and Levitan.) On the other hand, the relevant work of the

author, consisting of five books and 106 papers, is cited in its entirety. This

curious imbalance is unfortunate, because it makes it difficult for the interested
reader to place in context and appreciate the considerable achievements of the

author. To be sure, the reader is duly warned; the introduction states clearly

that,

This book presents in detail and essentially in a self-contained

way the author's results and methods developed by the author

for studying multidimensional inverse problems of scattering
theory, geophysics and some other types of inverse problems,

such as inverse spectral problems and inverse source problems.

These methods are based on the new notion: completeness of

the set of products of solutions to partial differential equations.

This notion has been introduced and used systematically in the
series of papers [R].

The book, however, is hardly self-contained; for some of the arguments and

details of proof, the reader is directed to dig among the individual books and
papers of the author. (For the proof of Lemmas 1, 2, and 3 of Section 3.2,

for example, the reader is referred to the author's book Scattering by obstacles
(D. Reidel, Dordrecht, 1986) without further guidance.) And the notion of

completeness of products of solutions is hardly new; it was used already by
Borg [1] and later by Deift and Trubowitz [15], among others.

The table of contents presents an assortment of topics in the subject of the

title, guided only by the author's own particular interests. Chapter 1 provides

a brief introduction, including the quotation above. Chapter 2 introduces the
concept of inverse scattering problems and identifies some six of them, each

with numerous variations. (These variations are all given code numbers, like

IP 12, and are referred to hereafter only by their code numbers, sorely testing the

reader's powers of concentration.) Chapter 3 discusses in detail the uniqueness

problem for potential, refractive, and boundary scattering, as well as scattering
governed by Maxwell's equations and other hyperbolic equations, and includes

the substantial original contributions of the author based on the method of
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completeness of products mentioned above. Chapter 4 gives analytical solutions

to those few problems where such solutions are known and includes the author's

very nice results for the boundary scattering problem. Chapter 5 considers var-

ious computational methods proposed by the author for resolving numerically
the inverse potential, refraction, and boundary scattering problems. These are

based either on expansion in spherical harmonics or on variational principles
and are shown to converge under appropriate assumptions. Chapter 6 offers a
digression into the realm of signal processing and includes algorithms for the
inversion of the Laplace transform and the Radon transform with incomplete

data.
Chapter 7 takes up the characterization and reconstruction problems for the

case of three-dimensional potential scattering. The discussion includes a de-
scription of the reconstruction procedure of Newton, which is based on the

method of Marchenko, and a complicated characterization of the scattering
data, which is due to the author. Chapter 8 returns to the one-dimensional

inverse problems to describe in detail the Gelfand-Levitan procedure and some
of its consequences, and Chapter 9 briefly surveys other miscellaneous results,

including inverse source problems, phase retrieval problems, and problems in

integral geometry. Two appendices discuss low-frequency asymptotics and sta-

bility estimates for numerical procedures. At the end of the book there is a
list of open problems, mostly highly technical, which have concerned the au-

thor, a table of the inverse problems discussed, a list of symbols, and some

bibliographic notes.
At $170 it is hard to know what audience this book will command. It is

perhaps best viewed as a summary and guide to the author's own consider-

able contributions to a difficult and important class of problems. The publisher

declares that, "This book will be of use to a wide range of readers: research
mathematicians, Ph.D. students, geophysicists, electrical engineers, material sci-
entists, and mathematics instructors will find much new and useful material in
this monograph."

All of those listed here will indeed find much new material. None of them
will find it easy going. And utility, like beauty, will lie in the eye of the beholder.
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Fourier analysis on abelian groups is of great importance in the modern
world. It is also a very old idea—dating back to the ancient Babylonians. The

Fast Fourier Transform or FFT has helped to revolutionize many things from
weather prediction to home music systems. The FFT is a rewrite of the Fourier
transform on a finite abelian group such as Z/nZ, the additive group of integers

modulo n . It was used by Gauss in 1805 to compute the orbit of the asteroid
Juno and popularized by Cooley and Tukey in 1965.

Fourier analysis on nonabelian groups such as the group 0(3) of rotations
of 3-space and its quotient 0(3)/0(2)—the sphere—is also quite old. Laplace
and Legendre introduced expansions of functions in spherical harmonics in the

1780's in order to study gravitational theory. Such analysis is necessary for

understanding any phenomena with spherical symmetry, for example, earth-
quakes, the hydrogen atom, and the solar corona. See the reviewer's book [18,

Chapter 2]. Recently a fast algorithm was found by Driscoll and Healy [9] for
computing the Fourier transform on the sphere.

Fourier analysis on nonabelian finite groups is of more recent origin, going
back to Frobenius. There are applications to many things: elementary particles,

crystals, statistics, error-correcting codes, geometry. Diaconis [7] gives many

examples, for instance, in the analysis of data from a survey which asked people

to rank where they want to live: city, suburbs, or country. Diaconis [7, p. 143]


