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Fourier analysis on abelian groups is of great importance in the modern
world. It is also a very old idea—dating back to the ancient Babylonians. The

Fast Fourier Transform or FFT has helped to revolutionize many things from
weather prediction to home music systems. The FFT is a rewrite of the Fourier
transform on a finite abelian group such as Z/nZ, the additive group of integers

modulo n . It was used by Gauss in 1805 to compute the orbit of the asteroid
Juno and popularized by Cooley and Tukey in 1965.

Fourier analysis on nonabelian groups such as the group 0(3) of rotations
of 3-space and its quotient 0(3)/0(2)—the sphere—is also quite old. Laplace
and Legendre introduced expansions of functions in spherical harmonics in the

1780's in order to study gravitational theory. Such analysis is necessary for

understanding any phenomena with spherical symmetry, for example, earth-
quakes, the hydrogen atom, and the solar corona. See the reviewer's book [18,

Chapter 2]. Recently a fast algorithm was found by Driscoll and Healy [9] for
computing the Fourier transform on the sphere.

Fourier analysis on nonabelian finite groups is of more recent origin, going
back to Frobenius. There are applications to many things: elementary particles,

crystals, statistics, error-correcting codes, geometry. Diaconis [7] gives many

examples, for instance, in the analysis of data from a survey which asked people

to rank where they want to live: city, suburbs, or country. Diaconis [7, p. 143]
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finds, using Fourier analysis on the group S3 of permutations of three objects

that "the best single predictor of / is what people rank last."
Much of the motivation of the delightful book by Gurarie comes from math-

ematical physics. One uses real abelian Fourier analysis, for example, to find the

Green's functions or fundamental solutions of the Laplacian, heat, Schrödinger,

wave equations, etc. See Gurarie, p. 92.

Fourier analysis on nonabelian continuous groups is still a very active field.

Some of the major contributors in the century include H. Weyl, E. Cartan,

Harish-Chandra, I. Gelfand, S. Helgason, and A. Selberg. The work being re-
viewed gives a good introduction to this topic. Let us summarize some of the

results obtained by considering the finite group case. This provides a primer

for the continuous theory without the prerequisites of measure theory and dif-

ferential geometry. And the finite theory is of use whenever one wants to put

anything on a computer. Greenspan [10] argues that, since the universe is finite,

it is more appropriate to use finite models than infinite ones. See also Nambu

[16] for finite versions of the standard equations of mathematical physics such

as the heat and wave equations considered by Gurarie in §2.4. See Terras [19]

for more details on some of these remarks.
Suppose that G is a finite abelian group. Let T be the multiplicative group

of complex numbers of norm one (the 1-dimensional torus). Then the dual

group G = {x: G —> T\% is a group homomorphism}. One can show that

G is isomorphic to the original group. In the case that G = Z//iZ, under

addition modulo n , the elements of G have the form ea(x) — exp(2niax/n),

for a, x e Z/nZ.
The Fourier transform of a complex-valued function / on G is

/(*)-■£/(*)*(*)   for/eÔ.
x€G

This transform has properties analogous to those of the Fourier transform on
R ; for example, Fourier inversion:

f(x) = jgrA-JC).

The transformation has the property of changing convolution

(f,g)(x) = ^f(y)g(x-y)
y€G

into pointwise multiplication

(f*gr(x) = f(x)-g(x).

This implies that if M is a circulant matrix or the adjacency matrix of a

cycle graph, then FMF~l is diagonal. You can use this result to study random

walks on such graphs. Diaconis [7] uses Fourier analysis to study questions such

as how long it takes for a randomly walking creature to reach every vertex.

The simplest version of the Heisenberg uncertainty principle says that, if

supp/ = {x e G | f(x) ¿ 0} , then

supp/Hsupp/| > |G|.
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See Donoho and Stark [8]. This implies that a function and its Fourier

transform cannot both be highly localized. In quantum mechanics this translates

to the statement that it is impossible to find a particle's position and momentum

simultaneously. The uncertainty principle also shows its (ugly/beautiful) face

in signal processing and medical imaging.
The Selberg trace formula or Poisson summation formula for the finite abelian

group G says that, if H is a subgroup of G and / a function on G, then

1     ' h€H '    ' Xe(G/H)~

where
(G/Hr = {X € G | x(h) = 1 for all h e H}.

There are many consequences, for example, the Jessie Mac Williams identities

in the theory of error-correcting codes (see Mac Williams and Sloane [14]) and

Lechner's theorem on the extraction of prime implicants of switching functions
(see Mukhopadhyay [15]). We should also note that the Poisson summation

formula (and its generalization to the Selberg trace formula) is related to the

method of images in mathematical physics (see Gurarie, pp. 104-109).
The nonabelian analogs of these results are similar. Suppose that G is a

finite group. Then a (finite-dimensional) unitary representation n of G is

a group homomorphism n: G —► U(dn). Here U(n) is the unitary group

of n x n complex matrices g such that g* g = /, where g* denotes the

transpose conjugate of g. The unitary representation n is irreducible if it is

not uniformly block diagonalizable. Two representations are equivalent if one

can be obtained from the other by uniform change of basis. Let G be a complete

set of inequivalent irreducible unitary representations of G. If /: G -+ C, then

the Fourier transform is

/(*) = £/(*)*(*).
g€G

Note that f(n) is a d„ x dn matrix. The Fourier inversion formula says

/M-i^E'WfW*'1)/**))-
Tied

See Gurarie p. 131. Once more the convolution property holds. This has an

immediate application to the study of random walks on graphs, for the Fourier
transform can be used to block diagonalize the adjacency matrix of the graph,

which is essentially the Laplacian for the graph. This is analogous to the fact

that the Fourier transform on R" diagonalizes constant coefficient differential
operators such as the Laplacian (see Gurarie p. 92). For more examples from
graph theory, see Gurarie (pp. 143-145), Diaconis [7, pp. 48-49], and Angel et
al. [1, 2]. We find in these last papers that Fourier analysis is useful for studying

Ramanujan graphs. A k-regular graph is Ramanujan if for all eigenvalues k

of the adjacency matrix with \k\ ^ k, we have \k\ < 2Vk - 1. Such graphs
have possible applications in building communications networks because they

have large expansion constants. See Bien [4], Fan Chung [6], and Lubotsky,

Phillips, and Sarnak [13]. The name Ramanujan was attached to such graphs

by Lubotsky, Phillips, and Sarnak [13] because the graphs they considered were
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proved to be Ramanujan by using the truth of the Ramanujan conjecture which

bounds Fourier coefficients of holomorphic modular forms.

Next let us discuss the Selberg trace formula for a finite group G with sub-

group H. This is taken from Arthur [3]. Suppose for simplicity that co isa

1-dimensional representation of H. Let p be the induced representation of G ;

i.e., p — Ind^ftJ, acting on the space

Vw = {(p: G -* C | 4>{hx) = œ{h)4>{x), for all x G G, he H}

by the right action p(g)<f>(x) = <fi(xg), for x, g G G. We extend the definition
of the Fourier transform above to arbitrary representations, not just irreducible

ones. Then we find that for <j> G Vm we have

[/(/>MW = £/(v)0(xy)= Y.  E.A^'ÄyMWO').
y€G y€H\G h€H

This means that the trace of the operator on Vw is

Tr(/(/>))=   £    £/•(*-'Ax)w(A).
xeH\G h€H

On the other hand, the representation p is a direct sum of integer multiples

m(n, p) of 7T G G. So we find another formula for the trace which gives the

pre-trace formula:

Yjm{n,p)Jr{f{it))=   £    £ f(^lhx)œ(h).

This result can be used to prove the Frobenius reciprocity law and the Frobenius

formula for the character of the induced representation. It clearly specializes

to Poisson summation when G is abelian. Selberg went on to rewrite the right-

hand side of this formula in terms of conjugacy classes in H. It is interesting

to carry this out explicitly for G = GL(2, F?) and H = GL(2, ¥p), where F9
is the finite field with q elements and q = pr. See Angel et al. [2]. The result

looks rather similar to that obtained for real base field in Gurarie, §7.5, or see

Terras [18, §3.7]. Of course, the explicit determination of the representations of

G is required . Gurarie does the continuous version for SL(2, R) in Chapter

7. The finite field case is quite analogous. See Piatetski-Shapiro [17].

There are many applications of the Selberg trace formula for SL(2, R). Some

of these can be found in Terras [18]. One is to derive the Weyl law for the

asymptotics of eigenvalues of the non-Euclidean Laplacian for L2(Y\H), for T

a discrete subgroup of SL(2, R) such as SL(2, Z). See Gutzwiller [11] for a

discussion from the point of view of mathematical physics. We should perhaps

note that for higher rank Lie groups the theory becomes much more compli-
cated. See Helgason [12] for a nice summary of Fourier analysis on symmetric

spaces G/K. We attempted to do the case of GL(«, R) with applications to
multivariate statistics and the theory of lattice packings of spheres, for exam-

ple, in Terras [18]. Dorothy Andreoli [21] gives an explicit generalization of the

Selberg trace formula to SL(3, R). See also Arthur [3].

It is also possible to create finite analogs of other results studied by Gu-
rarie. For example, various authors have studied finite analogs of the Radon

transform, for example, Bolker [5] and Velasquez [21]. The continuous version
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of the Radon transform is now important for computerized tomography, CAT

scanners.
Here we have only managed to outline a small portion of the book for the

finite group case of the subject matter of the book of Gurarie. Of course,
the main examples in this book are continuous groups such as: the compact

Lie groups, for which Gurarie derives Weyl's character formula and the Borel-
Weil-Bott Theorem; the nilpotent groups for which the Kirillov orbit method is

explained; and the semisimple groups such as G = SL(2, R) and quotients G/K

such as the upper half plane and fundamental domains for discrete subgroups

of G. The book ends with applications to mathematical physics, making use

of Emmy Noether's theorem in the calculus of variations. The topics of Toda

lattices, the hydrogen atom, and the Kepler problem are to be found here.

To summarize, this book is a wonderful addition to the literature. There

are concrete examples everywhere. As the author says, "We never engage in

'abstract' studies for their own sake." The writing is elegant and enjoyable.

Congratulations to the author.
However, I am not sure that the publisher should be congratulated for its

pricing policy or its warning: "No responsibility is assumed by the publisher

for any injury and or damage... from any use or operations of any methods,

products, instructions or ideas contained in the material herein." Damage from

the use of group representations?
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