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Abstract. Is speculative mathematics dangerous? Recent interactions between

physics and mathematics pose the question with some force: traditional mathe-

matical norms discourage speculation, but it is the fabric of theoretical physics.

In practice there can be benefits, but there can also be unpleasant and destructive

consequences. Serious caution is required, and the issue should be considered

before, rather than after, obvious damage occurs. With the hazards carefully in

mind, we propose a framework that should allow a healthy and positive role for

speculation.

Modern mathematics is nearly characterized by the use of rigorous proofs.

This practice, the result of literally thousands of years of refinement, has brought

to mathematics a clarity and reliability unmatched by any other science. But it

also makes mathematics slow and difficult; it is arguably the most disciplined

of human intellectual activities.

Groups and individuals within the mathematics community have from time

to time tried being less compulsive about details of arguments. The results have

been mixed, and they have occasionally been disastrous. Yet today in certain

areas there is again a trend toward basing mathematics on intuitive reasoning

without proof. To some extent this is the old pattern of history being repeated

by those unfamiliar with it. But it also may be the beginning of fundamental

changes in the way mathematics is organized. In either case, it is vital at this

time to reexamine the role of proofs in mathematical understanding and to

develop a constructive context for these trends.

We begin with a discussion of physics, partially because some of the current

movement results from an interaction with theoretical physics and partly be-

cause it provides a useful model for potential sociological realignments. We

then turn to the history of mathematics for examples illustrating the benefits

and hazards of nonrigorous work. Finally, we suggest a framework which should

allow different approaches to coexist.

Theory and rigor

Typically, information about mathematical structures is achieved in two

stages. First, intuitive insights are developed, conjectures are made, and specu-

lative outlines of justifications are suggested. Then the conjectures and specu-

lations are corrected; they are made reliable by proving them. We use the term

theoretical mathematics for the speculative and intuitive work; we refer to the

proof-oriented phase as rigorous mathematics. We do not wish to get involved

in a discussion of our choice of terminology; this is not the central point of our
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article. However, as a point of departure, we briefly clarify our definitions of

theory and rigor.
The initial stages of mathematical discovery—namely, the intuitive and con-

jectural work, like theoretical work in the sciences—involves speculations on

the nature of reality beyond established knowledge. Thus we borrow our name

"theoretical" from this use in physics. There is an older use of the word "theo-

retical" in mathematics, namely, to identify "pure" rather than applied mathe-

matics; this is a usage from the past which is no longer common and which we

do not adopt.
Theoretical work requires correction, refinement, and validation through ex-

periment or proof. Thus we claim that the role of rigorous proof in mathematics

is functionally analogous to the role of experiment in the natural sciences. This

thesis may be unfamiliar but after reflection should be clear at least to math-

ematicians. Proofs serve two main purposes. First, proofs provide a way to

ensure the reliability of mathematical claims, just as laboratory verification pro-

vides a check in other sciences. Second, the act of finding a proof often yields,

as a byproduct, new insights and unexpected new data, just as does work in the

laboratory.
Mathematicians may have even better experimental access to mathematical

reality than the laboratory sciences have to physical reality. This is the point of

modeling: a physical phenomenon is approximated by a mathematical model;

then the model is studied precisely because it is more accessible. This accessibil-

ity also has had consequences for mathematics on a social level. Mathematics

is much more finely subdivided into subdisciplines than physics, because the

methods have permitted a deeper penetration into the subject matter.

Although the use of proof in mathematics is functionally parallel to experi-

ment, we are not suggesting that proofs should be called "experimental" math-

ematics. There is already a well-established and appropriate use of that term,

namely, to refer to numerical calculations and computer simulations as tests of

mathematical concepts. In fact, results of computer experiments are frequently

presented in a way we would call theoretical: general conclusions are proposed

on the basis of test cases and comparisons. The conclusions are not completely
reliable, and an effort to provide real proofs would inevitably turn up exceptions

and limitations.

Division of labor

In physics we have come to accept a division of labor between theorists and

experimentalists. But in fact only recently has the division become so clear.
Until the beginning of the twentieth century there was basically one community

of physicists. It was the ideal, and by and large the practice, that the same people
both speculated about theory and verified their speculations with laboratory

experience.
Certainly in Europe it had become clear by 1900 that a bifurcation had oc-

curred: there were sufficiently many physicists who concentrated solely on the

theoretical side of their work that one could identify two distinct communi-

ties [H]. This trend proceeded somewhat more slowly in the United States.

E. C. Kemble, who worked at Harvard in the area of quantum theory, is gen-

erally regarded as the first American to obtain a doctorate in purely theoretical
physics (though his 1917 thesis contained an experimental appendix).
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Distinctness of the theoretical and experimental physics communities should

not be confused with their independence. Theory is vital for experimentalists to

identify crucial tests and to interpret the data. Experiment is vital for theorists

to correct and to guide their speculations. Theoretical and experimental groups

are unstable and ineffective unless they occur in closely interacting pairs.

We contrast this division of labor in physics to the current situation in math-

ematics. It is still the ideal, and by and large the practice, that the same peo-

ple both speculate about mathematical structures and verify their speculations

through rigorous proofs. In other words, the mathematical community has not

undergone a bifurcation into theoretical and rigorous branches. Even on the

individual level we seldom recognize theoretical mathematics as an appropriate

principal activity.
There have been attempts to divide mathematical efforts in this way, but these

attempts were for the most part unsuccessful. Why? Is there something about

mathematics itself which invalidates the analogy with physics and prevents such

a bifurcation? Is "theoretical mathematics" in the end an oxymoron? Or were

there flaws in past attempts which doomed them but which might be avoided

today?

New relations with physics

A new connection with physics is providing a good deal of the driving force to-

ward speculation in mathematics. Recently there has been a flurry of mathemati-

cal-type activity in physics, under headings like "string theory", "conformai field

theory", "topological quantum field theory", and "quantum gravity". In large

part this has been initiated by individuals trained as theoretical high-energy

physicists. The most celebrated and influential of these (though not the most

problematic) is Edward Witten.
From a physical point of view much of this work has not yet matured to

the stage where observable predictions about nature have been made. Further,

the work often concerns "toy models" designed to display only analogs of real

phenomena. And some of the parts which might apply to the real world concern

experimentally inaccessible events: particles of incredible energy, movement on

the scale of the universe, or creation of new universes.

One result of the lack of predictions is that these physicists are cut off from

their presumptive experimental community; they have no source of relevant

physical facts to constrain and inspire their theorizing. Since progress comes

from the interaction between theory and experiment, a theoretical group cannot

exist long in isolation. Indeed much of the mainstream physics community

regards these developments with suspicion, because of their isolation from the

so-called "real world".
But these physicists are not in fact isolated. They have found a new "exper-

imental community": mathematicians. It is now mathematicians who provide

them with reliable new information about the structures they study. Often it is

to mathematicians that they address their speculations to stimulate new "exper-

imental" work. And the great successes are new insights into mathematics, not

into physics. What emerges is not a new particle but a description of represen-

tations of the "monster" sporadic group using vertex operators in Kac-Moody

algebras. What is produced is not a new physical field theory but a new view

of polynomial invariants of knots and links in 3-manifolds using Feynman path

integrals or representations of quantum groups.
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These physicists are still working in the speculative and intuitive mode of the-

oretical physics. Many have neither training for nor interest in rigor. They are
doing theoretical mathematics. Very senior mathematicians have praised this

work and have suggested it should be emulated. As a result, some mathematical

followers are moving toward a more speculative mode.

One could conclude from this description that parts of mathematics have

already been propelled through the bifurcation. These areas have suddenly

acquired a fully functioning theoretical community, the theoretical physicists,

and traditional mathematicians have become the partner community of rigorous

verifiers.
However, this has happened without the evolution of the community norms

and standards for behavior which are required to make the new structure stable.

Without rapid development and adoption of such "family values" the new rela-

tionship between mathematics and physics may well collapse. Physicists will go

back to their traditional partners; rigorous mathematicians will be left with a

mess to clean up; and mathematicians lured into a more theoretical mode by the

physicists' example will be ignored as a result of the backlash. To understand

what is involved, we start with a look at the past.

OLD RELATIONS WITH PHYSICS

The rich interplay between mathematics and physics predates even their

recognition as separate subjects. The mathematical work that in some sense

straddles the boundaries between the two is commonly referred to as mathe-
matical physics, though a precise definition is probably impossible. In particular

over the past ninety years or so, a school of mathematical physicists emerged

around such persons as D. Hubert, F. Klein, H. Poincaré, M. Born, and later
H. Weyl, J. von Neumann, E. P. Wigner, M. Kac, A. S. Wightman, R. Jost,
and R. Haag—persons with training both in physics and in mathematics. These

people often worked on questions motivated by physics, but they retained the
traditions and the values of mathematics.

Results emerging from this school have at various times been relevant both for

mathematics and for physics. Their development has proceeded at a deliberate

pace with the accumulation of conclusions of long-term interest. A few (out of

many) recent examples include work on the existence of quantum field theory

and on its compatibility with relativity; the work of Lieb and of Baxter on

lattice models and related transfer matrices; the work of Schoen and Yau on the

positive energy theorem in relativity and its relation to the geometry of minimal

surfaces; the work of Ruelle and others on dynamical systems and turbulence;

the operator algebra approach to local quantum theory; and Connes's early

interest in physics, from which emerged his mathematical work on factors and

later the foundation of noncommutative geometry.

The main point here is what has not happened. Work from this school is

characterized by standards of scholarship and by knowledge of the literature

consistent with the best traditions of mathematics. There is no ambiguity about

definitions, the formulation of claims, or proofs of theorems. It is traditional

rigorous mathematics. Even in this close proximity to physics the traditional
values of mathematics have been retained. Mathematical physicists do have

access to a vast, rich body of speculation by theoretical physicists.  But these
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speculations have traditionally been addressed to physicists, not mathemati-

cians.
Theoretical physics and mathematical physics have rather different cultures,

and there is often a tension between them. Theoretical work in physics does

not need to contain verification or proof, as contact with reality can be left

to experiment. Thus the sociology of physics tends to denigrate proof as an

unnecessary part of the theoretical process. Richard Feynman used to delight

in teasing mathematicians about their reluctance to use methods that "worked"

but that could not be rigorously justified [F, G2]. He felt it was quite satisfactory

to test mathematical statements by verifying a few well-chosen cases.

On the mathematical side, E. J. McShane once likened the reasoning in a

"physical argument" to that of "the woman who could trace her ancestry to

William the Conqueror with only two gaps", and this was typical of the math-

ematical attitude. There was an understanding that the development must pro-

ceed at an internally appropriate pace and not be stampeded by the extent of the

physicists' vision. McShane and most of the mathematical physics community

rejected the free-wheeling, theoretical approach as inappropriate.

A relevant observation is that most theoretical physicists are quite respectful

of their experimental counterparts. Relations between physics and mathemat-

ics would be considerably easier if physicists would recognize mathematicians

as "intellectual experimentalists" rather than think of them disdainfully as use-

lessly compulsive theorists. The typical attitude of physicists toward mathemat-
ics is illustrated by a passage from a book of P. W. Anderson, "We are talking

here about theoretical physics, and therefore of course mathematical rigor is

irrelevant and impossible."1 In fact it is exactly as relevant and possible as ex-

perimental data, and like data should be used whenever available. Nevertheless,

students in physics are generally indoctrinated with antimathematical notions;

and if they become involved in mathematical questions, they tend not only to

be theoretical but often to deny that their work is incomplete.

Not all of mathematical physics has been as clearly mathematical as that

described above. For example, the work of the German mathematical physicist
K. Symanzik was mostly theoretical. However, he was very careful not to make

unwarranted claims of mathematical rigor. In fact, he made a serious attempt
in 1968 to establish an important part of his theoretical program on a rigorous
level in collaboration with the mathematician S. R. S. Varadhan. Some years

afterward, this was achieved by E. Nelson, Osterwalder, Schrader, and others

and had far-reaching consequences relating quantum theory, probability, and

statistical mechanics.

We also mention two people who have been addressing largely mathematical

questions from an almost entirely theoretical point of view for some time—

namely, B. Mandelbrot and M. Feigenbaum. See [G] for a popular account and

[Kr] for an expression of the mathematical discomfort with this activity.

For the most part the mainstream of mathematical physics has rejected purely

theoretical work as a valid mathematical style. We observe, however, that the

mathematicians involved in the "new relations" with physics are different from

'This is attributed by Anderson to Landau [A, p. 132]. Anderson continues, "This is not quite

so, but it is very close to it." However, he revealingly remembered the passage incorrectly; it reads

[LL], "No attempt has been made at mathematical rigor in the treatment, since this is anyhow

illusory in theoretical physics,... ."
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the traditional mathematical physicists. Geometers, topologists, and persons in

representation theory have begun to talk with physicists. These mathematicians

are unused to dealing with the difference in cultures and for the most part do

not recognize parallels in their own collective experience that would sensitize

them to the hazards of theoretical work. This suggests a question: As they gain

more experience, will these mathematicians also reject pure theorizing?

Success stories

We turn to mathematical encounters with theoretical work and begin with

the positive side. The posing of conjectures is the most obvious mathematical

activity that does not involve proof. Conjectures range from brilliant to boring,

from impossible to obvious. They are filtered by the interest they inspire rather

than by editors and referees. The better ones have inspired the development of

whole fields. Some of the most famous examples are the Riemann Hypothesis,

Fermat's "last theorem", and the Poincaré conjecture. The Hilbert problem list,

of amazing breadth and depth, has been very influential in the development of

mathematics in this century. Other examples are the Adams conjecture in topol-

ogy, the several Questions of Serre, the Novikov conjecture, and the Wightman

axioms for quantum field theory.

Some conjectures are accompanied by technical details or a proposal for a

proof. For example, the "Weil conjectures" outlined an approach to a p-adic

analog of the Riemann hypothesis. The implementation of this program by

Grothendieck and Deligne was celebrated as a major achievement for modern

algebraic geometry. Similarly celebrated was Falting's proof of the Mordell con-

jecture, part of a program to approach the Fermât "theorem". The "Langlands

program" for understanding automorphic forms has been a major stimulus to

that field, and "Mori's program" for the investigation of algebraic three-folds

has invigorated that area. The classification of finite simple groups was achieved

by implementing a program developed by Gorenstein.

These examples share the characteristic that they were explicitly speculative

when formulated (or at least quickly recognized as speculative, as for example

with Fermât). They represented a goal to work toward, and primary credit for

the achievement was clearly to be assigned to the person who found a proof.

Another type of mathematical work is intermediate between traditional and

theoretical. It proceeds in the way, "If A is true, then X, Y, and Z follow", or

"If A, then it is reasonable to conjecture R, S, and T." In this case "A" may

be a major outstanding mathematical conjecture, the Riemann Hypothesis for

instance. A striking recent example of work in this style occurs in the theory

of motifs, and recently an entire Séminaire Bourbaki was devoted to the evolu-

tion of work in number theory and algebraic geometry based on conjectures of
Deligne and of Beilinson [Fo]. It is interesting that the Bourbaki, once the bas-

tion of the most conservative traditional mathematics, now entertains pyramids
of conjectures.

The importance of large-scale, goal-formulating work (necessarily theoretical)

is growing. We are in an age of big science, and mathematics is not an exception.

The classification of finite simple groups, for instance, is estimated to occupy

15,000 journal pages! Other sciences have responded to this trend by forming
large formal collaborative groups.

The National Science Foundation and government agencies in other countries
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have tried to nudge mathematics in the direction of collaborative and interdisci-
plinary work. But one must recognize that large projects in mathematics are not

centered around a grant, a technique, or a machine. They are undertaken by in-

formal communities nucleated by a visionary theoretical program. In the finite

simple group effort, the program was developed and coordinated by D. Goren-

stein, who parcelled out pieces of the puzzle to an informal "team" working on

the problem. Future growth of such large-scale mathematical activity can only

occur with the evolution of more such visionary programs.

Cautionary tales

Most of the experiences with theoretical mathematics have been less positive

than those described above. This has been particularly true when incorrect or

speculative material is presented as known and reliable, and credit is claimed by

the perpetrator. Sometimes this is an "honest mistake", sometimes the result of

nonstandard conceptions of what constitutes proof. Straightforward mistakes

are less harmful. For example, the fundamental "Dehn lemma" on two-disks in

three-manifolds was presented in 1910. An error was found, and by the time

it was proved (by Papakyriakopolos in 1957) it was recognized as an important
conjecture.

Weak standards of proof cause more difficulty. In the eighteenth century,

casual reasoning led to a plague of problems in analysis concerning issues like

convergence of series and uniform convergence of functions. Rigor was intro-

duced as the antidote. It was adopted over the objections of some theorists in
time to avoid major damage.

More recently in this century the "Italian school" of algebraic geometry did

not avoid major damage: it collapsed after a generation of brilliant speculation.

See [EH, K] for discussions of the difficulties and the long recovery. In 1946 the

subject was still regarded with such suspicion that Weil felt he had to defend
his interest in it; see the introduction to [W].

Algebraic and differential topology have had several episodes of excessively

theoretical work. In his history [D], Dieudonné dates the beginning of the field

to Poincaré's Analysis Situs in 1895. This "fascinating and exasperating paper"

was extremely intuitive. In spite of its obvious importance it took fifteen or

twenty years for real development to begin. Dieudonné expresses surprise at

this slow start [D, p. 36], but it seems an almost inevitable corollary of how it

began: Poincaré claimed too much, proved too little, and his "reckless" methods

could not be imitated. The result was a dead area which had to be sorted out
before it could take off.

Dieudonné suggests that casual reasoning is a childhood disease of mathe-

matical areas and says, "... after 1910... uniform standards of what constitutes
a correct proof became universally accepted in topology... this standard has

remained unchanged ever since." But in fact there have been many further

episodes. René Thorn's early work on differentiable manifolds, for which he

received the Fields medal, was brilliant and generally solid. Later work on sin-

gularities was not so firm. His claim of C°° density of topologically stable maps

was supported by a detailed but incomplete outline, which was later repaired

by John Mather. Thorn went on to propose the use of "catastrophe theory",
founded on singularities, to explain forms of physical phenomena. The appli-

cation was mathematically theoretical, and its popularization, particularly by
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E. C. Zeeman, turned out to be physically controversial.

The early work of Dennis Sullivan provides another example. After a solid

beginning, in the 1970s he launched into a brilliant and highly acclaimed but

"theoretical" exploration of the topology of manifolds. Details were weak, and

serious efforts to fill them in got bogged down. Sullivan himself changed fields

and returned to a more rigorous approach. This field still seems to have more

than its share of fuzzy proofs.

William Thurston's "geometrization theorem" concerning structures on

Haken three-manifolds is another often-cited example. A grand insight deliv-

ered with beautiful but insufficient hints, the proof was never fully published.

For many investigators this unredeemed claim became a roadblock rather than

an inspiration.

In these examples, as with Poincaré, the insights proposed seem to be on

target. There are certainly cases in which the theoretical insights were also

flawed. The point is that even in the best cases there were unpleasant side effects

that might have been avoided. We also see that Witten, in giving a heuristic

description of an extension of the Jones polynomial [Wi], was continuing in a

long and problematic tradition even within topology.

Some areas in the Russian school of mathematics have extensive traditions

of theoretical work, usually conducted through premature research announce-

ments. From the numerous possible examples we mention only two. The first is

concerned with the perturbation theory of integrable Hamiltonian systems with

phase space foliated by invariant tori. In 1954 Kolmogorov announced that
tori with nonresonant frequencies survive a perturbation and gave an outline

of an argument. In retrospect it may be seen that this outline does touch on

the major ideas necessary, but it was generally considered insufficient to allow

reconstruction of a proof. Complete proofs were achieved by Arnold in 1959

for the analytic case and by Moser in 1962 for the smooth case.

The second example is one in which one of us became personally involved

while working on trying to establish a widely conjectured result that phase tran-

sitions occur in (relativistic) quantum field theory. In 1973 the respected math-

ematicians Dobrushin and Minios published an announcement of that result.

Two years later when no indication had come from the Russians of a proof,

Glimm, Jaffe, and Spencer resumed their work on the problem and eventually

gave two different proofs. A couple of years after that Dobrushin and Minios

published a retraction of their original announcement.

The problems

There are patterns in the problems encountered in these examples. We list

some and then discuss them in more detail.

(1) Theoretical work, if taken too far, goes astray because it lacks the feedback
and corrections provided by rigorous proof.

(2) Further work is discouraged and confused by uncertainty about which
parts are reliable.

(3) A dead area is often created when full credit is claimed by vigorous

theorizers: there is little incentive for cleaning up the debris that blocks further
progress.

(4) Students and young researchers are misled.

The first problem often overtakes would-be mathematical theorizers, particu-
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larly when they are unwilling to acknowledge that their work is uncertain and

incomplete. Even in theoretical physics where there is an awareness of this pos-

sibility, knowing when to stop is a subtle and difficult skill. Errant theorizing

damages the credibility of the theorist and may also damage the field through

the mechanism identified in the second problem.

The second problem has to do with uncertainty of the literature. In compar-

ison with other sciences, the primary mathematical literature is extraordinarily
reliable. Papers in refereed core mathematics journals are nearly always sound,

and this permits steady and efficient advance. Only a small pollution of serious

errors would force mathematicians to invest a great deal more time and energy

in checking published material than they do now. The advantages of a reli-
able literature are so profound that we suspect this is the primary force driving

mathematics toward rigor.
When reliability of a literature is uncertain, the issue must be addressed. Of-

ten "rules of thumb" are used. For example, mathematicians presume that pa-

pers in physics journals are theoretical. This extends to a suspicion of mathema-

tical-physics journals, where the papers are generally reliable (though with dan-

gerous exceptions). Another widely applied criterion is that anything using func-

tional integrals must be speculative. One of us has remarked on the difficulties

this causes mathematicians trying to use solid instances of the technique [J].

These kinds of rules are unsatisfactory, as is the caveat emptor approach of let-

ting each paper be judged for itself. Proponents of this latter view cite Witten's

papers as successful examples. But a few instances can be handled; it is large

numbers that are a disaster. Also, it is a common rule of thumb now to regard

any paper by Witten as theoretical. This short-changes Witten's work but illus-

trates the "better-safe-than-sorry" approach mainstream mathematics tends to

take when questions arise.
This unreliability is certainly a problem in theoretical physics, where the

primary literature often becomes so irrelevant that it is abandoned wholesale.

I. M. Singer has compared the physics literature to a blackboard that must be

periodically erased. Physicists traditionally obtain much less benefit from the

historical background of a problem, and they are less apt to search the literature.
The citation half-life of physics papers is much shorter than in mathematics.

The "dead area" problem concerns credit and rewards. Mathematical re-

searchers traditionally do not give credit twice for the same results. But this

means that when a theorist claims credit, it is difficult for rigorous workers to
justify the investment of labor required to make it reliable. There is a big dif-

ference between "filling in the details of a theorem by X " and "verifying a

conjecture of X ". Rigorous mathematicians tend to flee the shadow of a big

claim. The pattern is that the missing work is filled in, often much later, using

techniques and corollaries of work on separate topics for which uncontested

credit is available.
Finally, on the last point most successful theorizers (at least in mathemat-

ics) have a solid background in disciplined work, which is the source of their

intuition and taste. Most students who try to dive directly into the heady world

of theory without such a background are unsuccessful. Failure to distinguish

between the two types of activity can lead students to try to emulate the more

glamorous and less disciplined aspects and to end up unable to do more than

manipulate jargon.
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Mathematicians tend to focus on intellectual content and neglect the impor-

tance of social issues and the community. But we are a community and often

form opinions even on technical issues by social interactions rather than directly

from the literature. Socially accepted conventions are vital in our understanding

of what we read. Behavior is important, and the community of mathematicians

is vulnerable to damage from inappropriate behavior.

Prescriptions

The mathematical community has evolved strict standards of proof and

norms that discourage speculation. These are protective mechanisms that guard

against the more destructive consequences of speculation; they embody the col-

lective mathematical experience that the disadvantages outweigh the advantages.

On the other hand, we have seen that speculation, if properly undertaken, can be

profoundly beneficial. Perhaps a more conscious and controlled approach that

would allow us to reap the benefits but avoid the dangers is possible. The need

to find a constructive response to the new influences from theoretical physics

presents us with both an important test case and an opportunity.

Mathematicians should be more receptive to theoretical material but with

safeguards and a strict honesty. The safeguards we propose are not new; they

are essentially the traditional practices associated with conjectures. However,

a better appreciation of their function and significance is necessary, and they

should be applied more widely and more uniformly. Collectively, our proposals

could be regarded as measures to ensure "truth in advertising".

Theoretical work should be explicitly acknowledged as theoreti-

cal and incomplete; in particular, a major share of credit for the

final result must be reserved for the rigorous work that validates

it.

This can make the difference between a dead area and a living industry. The-

oreticians should recognize that in the long run the success of their work is

dependent on the work of a companion rigorous community; they should honor

and nurture it when possible. Certainly in physics the community assigns ba-

sic credit for discovery to successful experimental investigations; they are not

regarded merely as verifying small details in the web of theoretical insight. On
the individual level mathematical authors should make a choice: either they

provide complete proofs, or they should agree that their work is incomplete

and that essential credit will be shared.   Referees and editors should enforce

this distinction, and it should be included in the education of students.

The other suggestions are concerned with the integrity of the mathematical

literature. It has always been acceptable to state a conjecture in a paper, and

occasionally papers have been published that are entirely theoretical. The key

issue is to identify the theoretical material clearly.

Within a paper, standard nomenclature should prevail: in the-

oretical material, a word like "conjecture" should replace "the-

orem"; a word like "predict" should replace "show" or "con-

struct"; and expressions such as "motivation" or "supporting

argument" should replace "proof. Ideally the title and abstract

should contain a word like "theoretical", "speculative", or "con-

jectural".
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The objective is to have flags indicating the nature of the work to readers. A

flag in the title of a theoretical paper would appear in a citation, which would

help limit second-hand problems. Theoretical work should be cited as a source

of inspiration or to justify significance or in supporting arguments in other

theoretical developments. Citing a theoretical paper for a structural ingredient

of a supposedly rigorous proof must be handled with care, and a flag in the title

would indicate when such care is needed.

Research announcements pose particular problems. Some announcements

are simply summaries of work that the author has completed and written down.

In such announcements, the language of theorem and proof is appropriate. Oth-

ers describe outcomes of arguments which have not been worked out in detail,

and sometimes they contain leaps of faith which require years of effort to bridge.

In these cases the traditional language misrepresents the work and is not appro-

priate; such announcements really should be identified as theoretical. The anal-
ysis above implies that because of this, publication of announcements may be

unwholesome or even damaging to the fabric of mathematics. Announcements

do have valid functions, for instance, establishing a claim to priority and alert-
ing others to new results and useful techniques. We therefore seek guidelines, as

with theoretical work in general, which will permit beneficial uses but limit the

potential damage. The key issue seems to be incorporation into the literature.
One solution is:

Research announcements should not be published, except as

summaries of full versions that have been accepted for publica-

tion. Citations of unpublished work should clearly distinguish

between announcements and complete preprints.

In this age of copying machines and electronic bulletin boards it is possible to

distribute information widely without formally publishing it. "Cross-cultural"

preliminary results of wide interest could be described informally in "news col-

umn" format in publications like the Mathematical Intelligencer or the Notices

of the American Mathematical Society. The lack of formal publication, there-

fore, should be at most a minor disadvantage. We observe that this discussion

also underscores the importance of maintaining the distinction between formal

(refereed) publication and a posting on a bulletin board. Maintaining this dis-

tinction may be one of the greatest challenges facing the development of serious
electronic journals.

If these safeguards are carefully followed, then it would be reasonable for any

mathematics journal to consider theoretical articles for publication. Stimulating

articles with incomplete proofs might be offered publication (after appropriate

word changes) as theoretical papers. Theoretical mathematics journals might

be appropriate. But care is required. Without honesty and caution by authors,
editors, and referees this would simply lead to the reintroduction of problems

that have been painfully and repeatedly purged over the years.

Our analysis suggests that the bifurcation of mathematics into theoretical
and rigorous communities has partially begun but has been inhibited by the
consequences of improper speculation. Will it continue? Probably it will in any

case, but it should evolve faster and less painfully if the safeguards are adopted.

In the classical areas it will be slower because intelligent speculation must be

based on a mastery of technical detail in previous proofs.  In these areas the
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framework for speculation is more likely to provide a constructive outlet for

nominally rigorous individuals, whose inspirations exceed their capacity for
rigorous proof. Other areas, particularly those involving computer simulations,

are different in that the generation and analysis of data is quite a distinct activity
from the construction of proofs. In some of these areas specialized theorists

can already be identified and are likely to proliferate.

In any case, the proposed framework provides a context for interactions be-

tween mathematicians and theoretical physicists. Whether or not they become a

permanent fixture in the mathematical community, physicists can be welcomed

as "theoretical mathematicians" rather than rejected as incompetent traditional

mathematicians.

Summary

At times speculations have energized development in mathematics; at other

times they have inhibited it. This is because theory and proof are not just

"different" in a neutral way. In particular, the failure to distinguish carefully

between the two can cause damage both to the community of mathematics and

to the mathematics literature. One might say that it is mathematically unethical

not to maintain the distinctions between casual reasoning and proof. However,

we have described practices and guidelines which, if carefully implemented,

should give a positive context for speculation in mathematics.
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